Constructing Pio Finder

Masakazu Kurata
08/22/2014

INTRODUCTION

- For flavor tagging improvement
- Vertex mass is the key to separate heavy/light flavor vertex
- Many piOs will escape from B/D vertex \rightarrow checked that using MC truth
- Mass resolution will be degrade due to escaping neutrals
- Is there possibility to recover piOs which escape from vertices?
- Building π^{0} finder - many components are necessary
- Gamma finder - using shower profile in calorimeters
- π^{0} finder - solving gamma pairing
- Vertex finder - which vertex is the π^{0} coming?
- Second step is to reconstruct piOs - pairing of 2 gammas
- Similar to jet pairing
- Using Bayesian approach(naïve Bayes)
- Checking good pairing eff. \& mis-pairing eff.

Gamma Pairing

Using naïve Bayes

- Posterior probability:

$$
P\left(\pi^{0} \mid x\right)=\frac{P\left(x \mid \pi^{0}\right) \cdot P\left(\pi^{0}\right)}{P(x)}=\frac{P\left(x \mid \pi^{0}\right) \cdot P\left(\pi^{0}\right)}{P\left(x \mid \pi^{0}\right) \cdot P\left(\pi^{0}\right)+P(x \mid \text { wrong }) \cdot P(\text { wrong })}
$$

- Identify as gamma pair from pi0 with $P\left(\pi^{0} \mid x\right)>$ threshold (need to optimize)
- Key point: piO decay kinematics

$$
m_{\pi^{0}}^{2}=2 E_{\gamma 1} E_{\gamma 2}(1-\cos \theta)
$$

- So, 2gammas' variables are highly correlated

Avoid mis-pairing when many gammas are located in very small area

- In many case, piOs are flying in same direction!
- So far, no very nice idea...

For this analysis

- Introducing 2D-likelihood
- Includes correlation effect
- $\mathrm{E}(\gamma 1)+\mathrm{E}(\gamma 2)$ v.s. θ \& $\mathrm{E}(\gamma 2)$ v.s. θ
- p.d.f.s from these distributions

- Distribution of other gammas inside the cone of decay angle
- To avoid mis-pairing of gammas located in small area

Hage Couping Anilyme

Variables to be used

- Signal: piOs from primary vertex $\left(\mathrm{L}_{\text {decay }}<0.3 \mathrm{~mm}\right)$
- Background: all the combinations of wrong pairs

Hage Couping Andy

PiO
Wrong pair

Problem of piO reconstruction in the events

- Pi0 reconstruction: maximize likelihood(minimize χ^{2}) globally in the event
- If, num. of piOs in the event is known, it is very easy!
- Big problem: num. of piOs in the event is a free parameter!!!
- So, trivial answer to meet the condition(maximum likelihood) IS: \rightarrow no piOs in the event!! (Likelihood is of course $0(\max)!$)
- To avoid it: impose a penalty for unpaired gammas
- So define the information criterion:

$$
I C=-2 \sum \log L\left(\pi^{0}\right)+k \cdot N(\text { unpaired } \gamma)
$$

- Gamma pairing is performed according to IC:
\rightarrow minimize IC
- If $\mathrm{k}(>0.0)$ is large, pairing of gammas is boosted \rightarrow it is necessary to optimize k !

K OPTIMIZATION SO FAR

- K will be set at the point where num. of piOs are almost same as the capacity of piO reconstruction matched with MC truth
- Set $k=0.03 \cdot \log N(\gamma)$

Higgs Coupling Analysis

RESULTS

- Good pairing eff. \& mis-pairing eff.

	Correct pair	Wrong pair
eff. (\%)	46.0 ± 0.3	54.0 ± 0.4

- Bad pairing eff. is the problem...
- When gammas are located in small area
- In many case, gammas tend to jam in small area
- Need to check the degradation when neutral hadrons are contaminated

Checking kinematics

PiO decay kinematics

TODO

- Method to minimization(maximization)
- Do I really get minimized IC? \rightarrow algorithm for minimization
- IC is a good estimator?
- I don't know how to improve gamma pairing eff...
- Only $\sim 50 \%$ so far

