FNAL ILC LLRF Controls and Fast Tuner R&D Status

Ruben Carcagno, Brian Chase, Gustavo Cancelo, Yuriy Pischalnikov (on behalf of the FNAL LLRF Working Group) 8/31/06

Outline

- FNAL ILC LLRF Control Task Status (Ruben Carcagno)
- CC2 Piezo Tuner Results (Yuriy Pischalnikov)
- Status of LLRF activities at FNAL-CD (Gustavo Cancelo, if time allows)

ILC Americas WBS 5.8.4: LLRF Controls

• Motivation

To develop LLRF systems for ILCTA and work towards an ILC LLRF system

• Milestones and Deliverables

- Design and fabrication of the LLRF system for the Horizontal Test Stand (HTS) in the Meson Area (ILCTA_MDB) by May 2006
- Status
 - All milestones and deliverables have been met: a LLRF system was delivered ahead of schedule for ILCTA_MDB commissioning using the Capture Cavity 2 (CC2), and the system is ready to support the HTS when needed

WBS 5.8.4: LLRF Controls ILCTA_MDB LLRF System

- Based on the latest DESY's FPGA-based controller VME card, Simcon 3.1
- Successfully supported the first CC2 test on March 2006
- Result of a strong collaboration with DESY which started on FY2005 and continued into FY2006
- System was first fully tested and fine-tuned using Fermilab's Capture Cavity 1 (CC1) in the A0 photoinjector area: good confidence about the performance of this system to support ILCTA_MDB commissioning with CC2
- Other components delivered to ILTA_MDB
 - A new Fermilab designed and built programmable muti-frequency, low-noise Master Oscillator (MO)
 - A new Fermilab designed and built Downconverter and Vector Modulator, and a 3.9 GHz up/down converter
 - A Fermilab built fast piezo tuner assembly instrumented with a novel method developed at Fermilab to continuously monitor piezo preload forces together with the associated electronics to monitor and control this device
- In parallel, a second LLRF system based on a modified SNS LLRF system for 1.3 GHz operation was also developed in collaboration with the SNS LLRF team and was ready as a contingency for ILCTA_MDB.

WBS 5.8.4: LLRF Controls ILCTA_MDB LLRF System: CC2 Results

8/31/2006

FNAL ILC LLRF Status

WBS 5.8.4: LLRF Controls ILCTA_IB1_VTS LLRF System

- Design completed by Joe Ozelis (FNAL), Roger Nehring (FNAL), and Tom Powers (Jlab)
- Design reviewed on 8/24/06 (Review Chair: Ralph Pasquinelli)
- Based on proven JLab's VTS VCO/PLL system (with improvements)
- Collaboration with Jlab established (Tom Powers, Christiana Grenoble)
 - Jlab MOU addendum to pay for this help approved by FNAL ILC management and forwarded to Jlab for approval
- FNAL/Jlab team in place, procurements being placed, ready to start implementation phase
- Schedule: full system test with cold cavity by 4/30/07

WBS 5.8.4: LLRF Controls ILCTA_IB1_VTS LLRF System

FNAL ILC LLRF Status

8/31/2006

WBS 5.8.4: LLRF Controls LLRF System R&D

- Simcon 3.1 board modifications to improve noise characteristics
 - Purchasing parts to build prototype and manufacture six modified boards to populate ILCTA in FY07
- Simcon 3.1 FPGA firmware developments for higher intermediate frequency (IF) capabilities (lower latency controller)
 - Developed FNAL ability to modify and compile Simcon 3.1 firmware
- Simcon 3.1 control System integration with DOOCS, EPICS, etc
 - Developing EPICS interface
 - Developing generic "C++" driver to easily interface Simcon 3.1 to any control system (DOOCS, EPICS, Matlab, Labview, etc)
- Feasibility of using commercial boards (Lyrtech) and high level FPGA programming (Matlab/Simulink/Sysgen) for LLRF applications
 - Purchased a Lyrtech board and software, developed IQ detector block
- Prototyping 32-channel in-house LLRF controller for an ILC RF unit
 - Lower cost, higher density technology
- UPenn collaboration: development of an ILC real-time RF unit simulator

ILC Fast Tuner R&D Status

Yuriy Pischalnikov (on behalf of the FNAL Fast Tuner Working Group) 8/31/06

CC2 Piezo Tuner (diagnostic instrumentation => 11SGs & 2RTD)

Preload on Piezoactuator during cooldown & warmup of CC2 (reading from bullet's SGs)

CC2 Transfer Function Measurements. CC2 operation at CW mode. Piezo work as Actuator.

Piezoactuator driven by <u>sinewave</u> signal (amplitude pick-to-pick ~1.5V) Frequency of <u>sinewave</u> change from 5Hz to 200Hz with 1Hz increment. Piezo stroke ~40nanometers translate to cavity.

Status of LLRF activities at FNAL-CD

Gustavo Cancelo

ILC meeting Thursday, August 31 2006

FNAL-CD Activity list and effort

- FNAL-LLRF controller hardware design.
 - 10 input, 4 output channels, 14 bits dynamic range, 125 Ms/s.
- Algorithm development and implementation for new LLRF controller.
 - Using high level tools such as Matlab/Simulink/System Generator.
- Cavity modeling and feedback control.
 - Some models implemented. We are interfacing with UPENN. More effort is needed to address the control problem.
- LLRF project management and FNAL collaboration.
 - Working in close collaboration with TD (Ruben Carcagno et al. and AD (Brian Chase et al.)
- Collaboration with other labs and universities.
 - Weekly TUE meeting 9am with DESY, KEK, UPENN, LBNL, ANL, SLAC and FNAL.
- CCII and ILCTA support.
 - This effort should increase in 07.

FNAL-CD Activity list and effort

- Effort used in 2006 plus the estimated for the rest of the year:
 - 2.8 FTEs
- Effort requested for 2007:
 - Between 4.0 and 4.2 FTEs.
- List of names working for LLRF at CD:
 - Ken Treptow
 - Ted Zmuda
 - Rick Kwarciany
 - Bill Haynes
 - Neal Wilcer
 - Gustavo Cancelo

Motivation for designing a 10-channel LLRF controller at FNAL

- The LINAC is one of the main focus of R&D at Fermilab.
 - FNAL LLRF group needs to master the hardware and software design of LLRF components to meet the required specifications for ILCTA and ILC.
- We have worked in close collaboration with DESY
 - Operated and tested DESY LLRF controllers Simcon 2.1 and Simcon 3.1.
 - We currently use Simcon 3.1 for CC2.
 - Noise measurement results can be found in ILC-docdb # 274: "Simcon3_1_noise_measurements", G.Cancelo, K. Treptow, (https://docdb.fnal.gov/ILC-private/DocDB/ShowDocument?docid=274)
 - The redesign of some components in Simcon 3.1 can help to lower the noise in the analog input/output channels and increase the controller's bandwidth.
- The FNAL LLRF controller is an R&D project.
 - Simcon 3.1 was used as a starting point.
- The FNAL LLRF controller is expected to be developed in time to be used in most ILCTA test areas.

Example of Simcon 3.1 noise measurements

Noise in the output of the DC/DC converter

The DC/DC converters have ~60mV of ripple due to >3A of current required by the ADCs and DACs. Power supply ripple is converted to noise by the front-end amplifiers

Redesign strategy: Use lower power ADCs, avoid high current DC/DC converters. Replace differential amplifiers with pulse transformers.

8/31/2006

FNAL ILC LLRF Status

FNAL LLRF controller

- Power management modifications with respect to Simcon 3.1:
 - New 14 bit ADCs draw 4 times less power and use +3V supply.
 - 3V are obtained by linear regulating the VME 3.3V down to 3V.
 - Analog inputs and outputs are AC coupled by pulse transformers.
- Clock distribution:
 - External clock jitter and internal clock jitter of ~200fs.
- FPGA size: 3x times bigger (Xilinx Virtex-4).
- PowerPC processor (instead of the one built into the FPGA).
- Schedule:
 - 1st hardware by end of November, 10 weeks debugging.
 - 5 board production and commissioning in early 07.

New IF frequency in the range of 10's of MHz

- Simpler than current 250KHz sampling method in Simcon
 - Less hardware required.
- Lower latency for the LLRF controller.
- Design is reported in ILC-docdb # 289: "IQ detector design", G.Cancelo, (https://docdb.fnal.gov/ILC-private/DocDB/ShowDocument?docid=289)
- Status: I-Q detector has been implemented in is being tested.

•Numerically controlled Oscillator (NCO) output: 120 dBc noise using a 12 bit table

8/31/2006

FNAL ILC LLRF Status