Higgs recoil mass study using ZH->qqH @ 250 GeV ILC

Tatsuhiko Tomita (Kyushu Univ.) Akiya Miyamoto (KEK), Taikan Suehara (Kyushu Univ.) & ILC physics working group

ZH production in 250 GeV ILC

ZH production in 250 GeV ILC

oduction process : e+e⁻ -> Zh (-0.8,+0.3) left : 289 fb, (+0.8,-0.3) right : 165 fb

• good S/N

This talk ->

small statistics

Zh -> qqh

- large statistics
- large backgrounds
- model independent ?

Simulation situation

Analysis flow

• ZZ/WW hadronic backgrounds

• 2 fermion background

• The other backgrounds

Event selection

6

• ZZ/WW hadronic backgrounds

Using forced-4jet clustering

7

- Cut with majorThrust > 0.35, minorThrust > 0.1
- Cut with Sphericity > 0.15

• 2 fermion background

• The other backgrounds

Using forced-2jet clustering

9

- Z candidate di-jetmass selection (70,110) GeV
- Z candidate di-jetp⊤ selection > 15 GeV
- Recoil mass selection (100,150) GeV

Event selection

Cuts and Selections table

cuts	qqH	4 fermion	2 fermion	other
left	50,816	9,361,676	19,315,415	216,171,025
right	34,308	1,084,045	12,556,240	222,597,419
box	78.4%	41.1%	66.1%	96.0%
z pt	71.4%	26.1%	22.1%	2.5%
y dijet	58.2%	18.1%	7.5%	0.2%
recoil	47.0%	8.1%	2.3%	0.1%
sphericity	46.3%	7.2%	1.5%	0.07%
thrust	45.2%	6.9%	1.3%	0.06%

significance was calculated in (110,150) GeV

polarization	significance	Δσ/σ
left (-0.8, +0.3)	21.5σ	4.7%
right (+0.8, -0.3)	30.5 <i>σ</i>	3.3%

Model Independent ?

mode	before	after	difference / mean	
H->all	549,279	258,159 (47.0%)		
H->bb	310,799	138,627 (44.6%)	-5.1%	
H->WW(I)	12,622	1,575 (12.5%)	-73.4%	
H->WW(sl)	53,607	27,843 (51.9%)	+10.4%	
H->WW(h)	56,065	35,926 (64.1%)	+36.4%	
H->gg	48,419	30,016 (62.0%)	+31.9%	
H->ττ	35,801	7,989 (22.3%)	-52.6%	
H->ZZ	15,103	7,665 (50.8%)	+8.1%	
H->cc	14,429	7,367 (51.1%)	+8.7%	
Η->γγ	2,051	990 (48,3%)	+2.8%	

Model Independent ?

mode	before	after	difference / mean	
H->all	549,279	258,159 (47.0%)		
H->bb	310,799	138,627 (44.6%)	-5.1%	
H->WW(I)	12,622	1,575	-73.4%	
H->WW(sl)	53,607	- (0)	+10.4%	
H->WW(h)	- na	35,926 (64.1%)	+36.4%	
H-	,419	30,016 (62.0%)	+31.9%	
H->	35,801	7,989 (22.3%)	-52.6%	
H->ZZ	15,103	7,665 (50.8%)	+8.1%	
H->cc	14,429	7,367 (51.1%)	+8.7%	
H->γγ	2,051	990 (48.3%)	+2.8%	

strategy for resolving efficiency issue -1

To resolve efficiency inconsistent issue, we will categorize events using

- the number of tau jets (0, 1, and >= 2)
- the number of isolated lepton (0, 1, and ≥ 2)

$$\begin{split} \mathrm{N}^{i} &= \sum_{n} \sigma_{\mathrm{tot}} \cdot \mathrm{BR}_{n} \cdot \theta_{n}^{i} \cdot \epsilon_{n}^{i} \\ \mathrm{n} = (\mathrm{b}, \mathrm{W}, \mathrm{g}, \tau, \ldots) \\ \mathrm{N}^{i} \text{ is a number of events in category } i, \sigma_{\mathrm{tot}} \text{ is total cross section,} \\ \mathrm{BR}_{n} \text{ is Higgs decay branching ratio, } \theta_{n}^{i} \text{ is fraction into category } i, \\ \epsilon_{n}^{i} \text{ is cut efficiency for category } i. \\ \text{If the cut efficiency of each decay mode can be assumed to be the} \\ \text{same as } \epsilon^{i} (=\epsilon_{n}^{i}). \qquad \frac{\mathrm{N}^{i}}{\epsilon^{i}} = \sigma_{\mathrm{tot}} \sum \mathrm{BR}_{n} \cdot \theta_{n}^{i} \end{split}$$

Then we can get

$$\sum_{i} \frac{\mathbf{N}^{i}}{\epsilon^{i}} = \sigma_{\text{tot}} \sum_{n} \sum_{i} \mathbf{BR}_{n} \cdot \theta_{n}^{i} = \sigma_{\text{tot}}$$

n

15

strategy for resolving efficiency issue -2

If the cut efficiency is not exactly the same,

we should consider the systematic effect caused by the difference.

$$\delta \epsilon_n^i = \epsilon_n^i - \epsilon^i$$

And the cross section is

$$\sigma_{\text{tot}} = \frac{\sum_{i} \frac{N^{i}}{\epsilon^{i}}}{1 + \sum_{n} \sum_{i} BR_{n} \cdot \theta_{n}^{i} \cdot \frac{\delta \epsilon_{n}^{i}}{\epsilon^{i}}}$$

We want to keep systematic uncertainty is less than 1 % to make the analysis model independent.

If we don't assume any models, we should keep $\theta_n^i \cdot \frac{\delta \epsilon_n^i}{\epsilon^i} \ll 1 \%$. If we can assume SM like higgs, we should keep $BR_n \cdot \theta_n^i \cdot \frac{\delta \epsilon_n^i}{\epsilon^i} \ll 1 \%$.

Categories

visene≧180 visene<180

category	0lep,0tau	Olep,1tau	Olep,1tau	0lep,≧2tau	1lep,0tau	llep,≧ltau	≥2lep,≧0tau
H->all 549,279	81.6%	3.5%	4.6%	2.7%	5.5%	1.3%	0.75%
H->bb 310,799	96.8%	2.3%	0.5%	0.04%	0.33%	0.01%	~0.0%
H->WW(I) 12,622	8.3%	0.04%	11.4%	6.9%	24.1%	26.3%	23.0%
H->WW(sl) 53,607	29.7%	8.9%	10.9%	1.4%	45.4%	3.4%	0.2%
H->WW(h) 56,065	91.9%	6.8%	0.4%	0.3%	0.5%	0.07%	0.0%
H->gg 48,419	96.6%	2.7%	3.0%	0.06%	0.3%	0.01%	0.0%
H->ττ 35,801	12.2%	2.8%	42.9%	35.4%	2.4%	4.2%	0.1%
H->ZZ 15,103	78.2%	5.0%	3.4%	1.5%	3.2%	2.7%	6.0%
H->cc 14,429	96.3%	2.9%	0.5%	0.05%	0.3%	0.01%	0.0%
H->γγ 2,051	91.3%	3.1%	2.1%	0.5%	0.7%	0.5%	1.9%

number of lepton > 1 number of tau : any box Z(81,101), W(70,90) yzjetpt > 15 sphericity > 0.15 Thrust > (major)0.311(minor)0.1		≧2lep, a	≥2lep, any tau			
		before	after	fraction * difference / mean		
ya re	dijetmass (70,110) ecoil (110,150) > OK	4,099	1,873 (45.7%)			
	H->bb (~0.0%)	1	0 (0.0%)	~0.0%		
	H->WW(I) (23.0%)	2,900	1,322 (45.5%)	0.05%		
	H->WW(sl) (0.2%)	110	45 (71.0%)	0.02%		
	H->WW(h) (0.0%)	0	0 (0.0%)	~0.0%		
	H->gg (0.0%)	0	0 (0.0%)	~0.0%		
	Η->ττ(0.1%)	43	15 (34.9%)	0.02%		
	H->ZZ (6.0%)	905	439 (47.8%)	0.4%		
	H->cc (0.0%)	0	0 (0.0%)	~0.0%		
	H->γγ (1.9%)	38	23 (57.9%)	0.6%		
	2f	637,657	1,015 (0.16%)	+ 10 times		
	4f	470,679	18,938	+ 4 times		

nı nı bo	umber of lepton == 1 umber of tau > 0 ox Z(81,101),W(70,90)	llep	llep, ≧ltau			
yz sp Tl	ijetpt > 15 hericity > 0.15 hrust > (major)0.3]](minor)0.1	before	after	fraction * difference / mean		
yc re	lijetmass (70,110) coil (110,150) > OK	7,201	3,155 (43.8%)			
	H->bb (0.01%)	43	16 (37.2%)	~0.0%		
	H->WW(I) (26.3%)	3,318	1,407 (42.4%)	0.8%		
	H->WW(sl) (3.4%)	1,848	862 (46.6%)	0.2%		
	H->WW(h) (0.07%)	37	16 (43.2%)	~0.0%		
	H->gg (0.01%)	7	3 (42.9%)	~0.0%		
	H-> $\tau \tau$ (4.2%)	1,511	632 (41.8%)	0.2%		
	H->ZZ (2.7%)	413	207 (50.1%)	0.4%		
	H->cc (0.01%)	2	1 (50.0%)	~0.0%		
	H->γγ (0.5%)	11	7 (63.6%)	0.2%		
	2f	325,765	665 (0.2%)	+ 10 times		
	4f	458,467	11,456 (2,5%)	+ 5 times		

number of lepton == 1 number of tau == 0 box $Z(81,101),W(70,90)$	llep	llep, Otau			
<pre>yzjetpt > 15 sphericity > 0.15 Thrust > (major)0.3]](minor)0.1</pre>	before	after	fraction * difference / mean		
ydijetmass (70,110) recoil (110,150) > OK	30,324	14,269 (47.1%)			
H->bb (0.33%)	1,075	427 (39.7%)	0.05%		
H->WW(I) (24.1%)	3,044	1,381 (45.4%)	0.9%		
H->WW(sl) (45.4%)	24,362	11,653 (47.8%)	0.7%		
H->WW(h) (0.5%)	307	126 (41.0%)	0.07%		
H->gg (0.3%)	140	54 (38.6%)	0.05%		
H-> $\tau \tau$ (2.4%)	852	405 (47.5%)	0.02%		
H->ZZ (3.2%)	484	207 (42.8%)	0.3%		
H->cc (0.3%)	42	14 (33.3%)	0.08%		
H-> $\gamma \gamma$ (0.7%)	13	2 (15.4%)	0.4%		
2f	216,126	906 (0.42%)	+ 2 times		
4f	2,430,014	125,036 (5.1%)	+ 3 times		

number of lepton == 0 number of tau > 1 box $Z(81.101)$. W(70.90)	0lep,	0lep, ≧2tau			
yzjetpt > 15 sphericity > 0.15	before	after	fraction * difference / mean		
Thrust > (major)0.35 (minor)0 ydijetmass (70,110)	14,859	6,282 (42.1%)			
$\begin{bmatrix} H - bb (0.04\%) \end{bmatrix}$	135	61 (32.6%)	~0.0%		
H->WW(I) (6.9%)	869	359 (41.2%)	0.2%		
H->WW(sl) (1.4%)	759	373 (48.0%)	0.2%		
H->WW(h) (0.3%)	156	74 (46.8%)	0.03%		
H->gg (0.06%)	30	11 (36.7%)	~0.0%		
H->ττ(35.4%)	12,660	5,302 (41.9%)	0.3%		
H->ZZ (1.5%)	232	94 (39.0%)	0.1%		
H->cc (0.05%)	8	3 (42.9%)	~0.0%		
H->γγ (0.5%)	10	5 (50.0%)	0.1%		
2f	212,460	158 (0.07%)	+ 10 times		
4f	194,430	7,085 (3.6%)	+ 5 times		

number of lepton == 0 number of tau == 1 box $Z(81,101)$. $W(70.90)$	ltau (visible energy ≧ 180)			
yzjetpt > 15 sphericity > 0.12	before	after	fraction * difference / mean	
Thrust > (major)0.35 (minor)0.1 ydijetmass (70,110)	19,871	8253 (41.5%)		
H->DD (2.3%)	7,589	2,908 (38.3%)	0.2%	
H->WW(I) (0.04%)	6	2 (33.3%)	~0.0%	
H->WW(sl) (8.9%)	4,805	1,947 (40.5%)	0.2%	
H->WW(h) (6.8%)	3,839	1,804 (47.0%)	0.9%	
H->gg (2.7%)	1,303	581 (44.6%)	0.2%	
H->τ τ (2.8%)	1,073	487 (45.4%)	0.3%	
H->ZZ (5.0%)	752	349 (46.4%)	0.6%	
H->cc (2.9%)	423	149 (35.2%)	0.4%	
H->γγ (3.1%)	66	19 (28.8%)	1.0%	
2f	8,885	440 (5.0%)	- 0.2 %	
4f	127,489	23,061 (18,1%)	- 0.05 %	

number of lepton == 0 number of tau == 1 box $Z(81,101),W(70,90)$	ltau (visib	ltau (visible energy < 180)			
<pre>yzjetpt > 15 sphericity > 0.15, < 0.65 Thrust > (maior)0.3ll(minor)0.1</pre>	before	after	fraction * difference / mean		
ydijetmass (70,110) recoil (110,150) > OK	25,205	11,832 (46.9%)			
H->bb (0.5%)	1,588	697 (43.9%)	0.03%		
H->WW(I) (11.4%)	1,435	653 (45.5%)	0.3%		
H->WW(sl) (10.9%)	5,829	2,969 (50.9%)	0.9%		
H->WW(h) (0.4%)	205	66 (32.1%)	0.1%		
H->gg (3.0%)	142	48 (33.8%)	0.08%		
H-> $\tau \tau$ (42.9%)	15,370	7,131 (46.3%)	0.5%		
H->ZZ (3.4%)	517	223 (43.1%)	0.3%		
H->cc (0.5%)	74	23 (31.1%)	0.2%		
H->γγ (2.1%)	42	19 (45.2%)	0.1%		
2f	533,323	2,819 (0.5%)	+ 5 times		
4f	1,473,190	115,206 (7.4%)	+ 4 times		

Categories

visene≧180 visene<180

category	0lep,0tau	Olep,1tau	0lep,1tau	0lep,≧2tau	1lep,0tau	llep,≧ltau	≧2lep,≧0tau
H->all 549,279	81.6%						
H->bb 310,799		0.2%	0.03%	~0.0%	0.05%	~0.0%	~0.0%
H->WW(I) 12,622		~0.0%	0.3%	0.2%		0.8%	0.05%
H->WW(sl) 53,607		0.2%	<u>∩ 0%</u>	0.2%		2%	0.02%
H->WW(h) 56,065		0.9		OK]		~0.0%
H->gg 48,419		0.2					~0.0%
H->ττ 35,801		0.3%	0.5%	0.3%	0	0.2%	0.02%
H->ZZ 15,103		0.6%	0.3%	0.1%	5%	0.4%	0.4%
H->cc 14,429		0.4%	0.2%	~0.0%	0.08%	~0.0%	~0.0%
H->γγ 2,051		1.0%	0.1%	0.1%	0.4%	0.2%	0.6%

0lep, 0tau

mode	before	after	fraction *		
mode	001010		difference / mean		
H->all (81.6%)	448 331	202,288			
		(45.1%)			
H->bb (96.8%)	300.845	126,305	6.7%		
		(42.0%)			
H->WW(I) (8.3%)	1.050	540	2%		
	,	(51			
H->WW(sl) (29.7%)	15,932	rey	1.3%		
		L Care			
H->WW(h) (91.9%)	51,50	3 00/1	17.9%		
		25 655			
H->gg (96.6%)	J.HU-	(54.8%)	20.8%		
		1,720	1 50/		
$\square \rightarrow l \gamma$,000	(39.4%)	1.5%		
	11007	5,769	6.6%		
	11,007	(48.9%)			
H \ (06 3%)	13802	6,596	51%		
11-200 (30.370)	13,032	(47.5%)	J.170		
H_{-} r r (91 3%)	1,872	912	7 3%		
		(48.7%)	1.370		
2f	542 208	2,548	+0.27%(前0.2%)		
	572,200	(0.47%)			
4f	1 600 679	115,206	+41%(前31%)		
	1,000,070	(7.2%)			

btag & ctag fraction

	b = 1, c = 1	b = 1, c = 0	b = 0, c = 1	b = 0, c = 0	
bb	4.2%	53.9%	8.4%	30.2%	
ww lep	0.1%	0.5%	2.4%	5.4%	
ww slep	0.3%	1.9%	10.2%	17.3%	
ww had	1.6%	9.0%	28.5%	52.8%	
gg	1.3%	10.4%	13.8%	71.2%	
tautau	0.2%	1.1%	4.4%	6.6%	
ZZ	2.6%	13.9%	15.2%	46.5%	
СС	2.1%	16.5%	41.4%	36.3%	
γr	0.7%	8.4%	8.9%	73.0%	

Olep, Otau using btag & ctag

ynjets<4 ynjets>3 ynjets<4 ynjets>3 ynjets<4 ynjets>3

	b = 1, c = 1	b = 1, c = 0	b = 1, c = 0	b = 0, c = 1	b = 0 c = 1	$b = 0, \\ c = 0$	$b = 0, \\ c = 0$
bb	0.05%	0.2%	0.3%	0.2%	1.0%	0.1%	0.7%
ww lep	0.04%	0.3%	0.1%	1.0%	0.1%	1.3%	0.03%
ww slep	0.1%	0.2%	0.3%	0.1%	1.8%	0.03%	1.2%
ww had	0.1%	0.01%	0.8%	0.0%	0.4%	0.04%	1.0%
gg	0.02%	0.3%	0.2%	0.1%	7.8%	1.1%	7.7%
tautau	0.05%	0.1%	0.1%	0.4%	1.1%	0.1%	0.7%
ZZ	0.07%	0.8%	0.9%	0.3%	0.6%	1.6%	0.9%
сс	0.05%	1.1%	1.0%	0.4%	6.2%	0.3%	0.5%
γr	0.2%	1.0%	0.8%	0.1%	0.6%	1.6%	0.2%

Summary & Prospects

- Summary
 - Categorization is one of the powerful solutions to reduce inconsistent of cut efficiency.
 - Currently, B tagger has low efficiency and purity.
 I will fix my program and update my result.

- Prospects
 - Use likelihood to improve statistical precision.
 - Estimate systematic uncertainties.

ILC Tokubetsu Suishin annual meeting 2014 : Tatsuhiko Tomita : 17/12/2014

28

backup

strategy for resolving efficiency issue -1

To resolve efficiency inconsistent issue, we will categorize events using

- the number of jets (2, 3, 4, and ≥ 5)
- the number of isolated lepton (0, 1, and ≥ 2)

$$\begin{split} \mathrm{N}^{i} &= \sum_{n} \sigma_{\mathrm{tot}} \cdot \mathrm{BR}_{n} \cdot \theta_{n}^{i} \cdot \epsilon_{n}^{i} \\ \mathrm{n} &= (\mathrm{b}, \mathrm{W}, \mathrm{g}, \tau, ...) \\ \mathrm{N}^{i} \text{ is a number of events in category } i, \sigma_{\mathrm{tot}} \text{ is total cross section,} \\ \mathrm{BR}_{n} \text{ is Higgs decay branching ratio, } \theta_{n}^{i} \text{ is fraction into category } i, \\ \epsilon_{n}^{i} \text{ is cut efficiency for category } i. \\ \text{If the cut efficiency of each decay mode can be assumed to be the} \\ \text{same as } \epsilon^{i} (=\epsilon_{n}^{i}). \qquad \frac{\mathrm{N}^{i}}{\epsilon^{i}} = \sigma_{\mathrm{tot}} \sum \mathrm{BR}_{n} \cdot \theta_{n}^{i} \end{split}$$

Then we can get

$$\sum_{i} \frac{\mathbf{N}^{i}}{\epsilon^{i}} = \sigma_{\text{tot}} \sum_{n} \sum_{i} \mathbf{BR}_{n} \cdot \theta_{n}^{i} = \sigma_{\text{tot}}$$

n

39th general meeting of ILC physics : Tatsuhiko Tomita : 01/11/2014

strategy for resolving efficiency issue -2

If the cut efficiency is not exactly the same,

we should consider the systematic effect caused by the difference.

$$\delta \epsilon_n^i = \epsilon_n^i - \epsilon^i$$

And the cross section is

$$\sigma_{\text{tot}} = \frac{\sum_{i} \frac{\mathbf{N}^{i}}{\epsilon^{i}}}{1 + \sum_{n} \sum_{i} \mathbf{BR}_{n} \cdot \theta_{n}^{i} \cdot \frac{\delta \epsilon_{n}^{i}}{\epsilon^{i}}}$$

We want to keep systematic uncertainty is less than 1 % to do model independent analysis.

If we don't assume any models, we should keep $\theta_n^i \cdot \frac{\delta \epsilon_n^i}{\epsilon^i} \ll 1 \%$. If we can assume SM like higgs, we should keep $BR_n \cdot \theta_n^i \cdot \frac{\delta \epsilon_n^i}{\epsilon^i} \ll 1 \%$. 39th general meeting of ILC physics : Tatsuhiko Tomita : 01/11/2014