Strip AHCAL performance and test beam results

16th December 2014 Reima Terada Shinshu University

Motivation

- Pixel size of Digital HCAL is 10mm x10mm so far.
- Digital HCAL has good capability for position measurement.
- Analog HCAL has good performance on energy resolution.
- \cdot and Semi-digital HCAL is being developed.
- We think another way to make 10mm x 10mm segmented "full analog" HCAL by using scintillator strip technology.
- · potentially good performance is expected.
- Challenge is to apply the strip splitting algorithm to the MIP like tracks close in hadron and EM cluster.

Strip AHCAL

- We choose 90mm x 10mm scintillator because it covers the same area 9cm² as 30mm x 30mm tile AHCAL.
- Strip directions are orthogonal to those in the neighboring layers.
- Effective segmentation is 10mm x 10mm.
- Further improvement is expected with tile layers between strip layers. (alternative)

Particle separation

Fraction of events successfully reconstructed as two K_L events v.s. particle distance.

Reconstructed energy of 10 GeV K_L injected together 30 GeV π^+ v.s. particle distance.

less than 200mm distance, 10mm x 10mm segmentation makes better separation than 30mm x 30mm.

uds jet simulation and other

- $\cdot\,$ uds Jet simulation on going
- need Optimize Parameter
 - \cdot detector parameter
 - · calibration
 - \cdot time window
 - · etc.
 - · Sc size
 - \cdot 10x10mm², 15x15mm² tile
 - \cdot 90x10mm², 180x10mm² strip
 - altanative option
 (90x10mm² with 30x30mm²)
 - · PFA parameter

Test Beam

Strip AHCAL

· CERN PS TB at Oct. 2014

· 4 Layers

DAQ system
 EASIROC-NIM MODULE

 \cdot Run stand alone

MPPC and scintillator

1600pixel MPPC 1cable has 9ch

enveloped in Kimoto reflector film

length 180mm

width 10mm thickness 2mm with WLSF

length 90mm

Scintillator Layer trip layer x2 90mm strip layer x2

180mm strip layer x2

18ch

4layer 108ch no absorber use in this test beam

LED calibration at Lab

separation 1p.e., 2p.e.

channel status Map

channel status Map

ipnijūuoj

91

MIP event display

0₀

Hit Position

Analysis status

- $\cdot\,$ took 33M events at beam time.
- · half of 90mm strips can separate MIP peak.
- all 180mm strips and other 90mm strips cannot separate MIP peak.
- · dead channels are 6ch.
- now try temperature correction.
- try MIP analysis of all data, apply SSA, extract det.eff. and response uniformity

Next Test Beam Plan

- · SPS test beam (next year)
 - · Use HBU (strip Ver.)
 - 2mm Sc -> 3mm Sc (TDR thickness)
 - · New MPPC
 - \cdot with absorber
 - take muon and pion data

strip HB

15

tile HBU

Summery

- $\cdot\,$ We are developing strip AHCAL.
- Strip AHCAL has potential to have good position resolution.
- \cdot need to study the simulation more.
- · took a lot of data at CERN Test Beam Oct. 2014.
- \cdot analysis of test beam data on going.
- · plan next test beam at SPS next year

Back Up

Strip Splitting Algorithm(SSA)

 SSA recovers better position resolution to strip direction.

18

Alternative option

- Further improvement is expected with tile layers between strip layers.
- · We install it to ILD detector model.

30mm x 30mm simulation on going

Jet Energy Resolution

With default PandoraPFA parameters

10mm x10mm segmentation results are similar to 30mm x 30mm tiles.

need optimization of parameters

simulation is on going

setup

⁹⁰Sr test

put ⁹⁰Sr at center of strip

with EASIROC

MIP peak = 18p.e. MIP peak = 8p.e. decide operation voltage set 90mm 3.5V 180mm $4V_{23}$

events

date	event	
	5 852 760	
	$J_0J_1/00$	
	4,491,974	
1012	4,491,974	
1013	3,694,628	
1014	3,072,119	
1015	3,466,431	
1016	1,908,871	
1017		blackout
8101	1,656,375	
1019	2,838,432	
1020	1,807,382	
1021	5,010,846	
sum	33,799,818	

Uniformity of response

with camas ADC by Tsuzuki

EASIROC-NIM MODULE

- · for MPPC
- $\cdot\,$ developed by KEK and OSAKA University
- \cdot EASIROC Chip x2
- · 64 ch / module
- \cdot + ADC, HV power supply
- · settable Individual bias voltage, gain, shaping time
- \cdot controlled by PC via Ethernet
- power needs 6V (NIM or AC adapter)

EASIROC chip

peak hold

DAQ Φ õ -6-•0 ÷ Connectors (modules) Conned (senso -68 Φ ¢. Θ 12 cables 400r 108 channels Max Height = 11mm LEMO Connector Holes PINs

64 channels x 2 Easiroc-NIM module

Trigger and DAQ

cell size vs Jet Energy Resolution

Uniformity of response

⁹⁰Sr test

put ⁹⁰Sr at center of strip

event

with EASIROC