





### **Front End Electronics** Readout systems for gaseous detectors

The designer point-of view LCTPC meeting, Bonn, 2014-09-18

Fabrice Guilloux, CEA Saclay





## Outline

- Developments for gaseous detector readout ASIC
  - Present
  - Future
- Optimization : Feedback from a Front End design in IBM 130nm
  - Saltro I 6
  - Common Front End specification
  - CFEI ASIC
- New technologies :
  - General tough about deep-submicron technology
  - New integration process





## **Gazeous detector readout ASIC**

- Architecture from SALTRO 16, 2 examples :
  - SAMPA asic for Alice TPC
  - GdSP asic, foreseen first for CMS Muon, could fit also for CMS calorimeter



fabrice.guilloux@cea.fr

Complete design - for short term production are in the 130nm node

18/09/2014





# **Gazeous detector readout ASIC**

#### Architecture from SALTRO 16



- FE : Front End
  - Charge Sensitive Amplifier
  - Transimpedance Amplifier
  - ➔ Noise optimization
- ADC : Analogue to Digital Converter
  - SAR → Low Power
  - Wilkinson → // ADC
- DSP : Digital Signal Processing
- CBM : Calibration Bias and Monitoring
- Serial links :
  - downstream and upstream (i.e. trigger if needed)

fabrice.guilloux@cea.fr

LCTPC meeting, Bonn





**Optimization**?

# **Gazeous detector readout ASIC**

• After SALTRO 16 ?





6



## SALTRO16

|  | Power domains:<br>PASA analog<br>ADC analog<br>ADC digital<br>Digital core | PASA ~8mW/ch,<br>ADC 36mW/ch @40MHz<br>Digital functions ~114mW<br>Total power ~ 750mW |
|--|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|  | Digital Pads Succ                                                          | cesful power pulsing operation                                                         |
|  | Power Di                                                                   | stribution for 16                                                                      |
|  | C                                                                          | hannels                                                                                |
|  |                                                                            | PASA                                                                                   |
|  |                                                                            | ADC                                                                                    |
|  |                                                                            |                                                                                        |
|  | 📕 Large gain are 🥤                                                         | Digital<br>functions                                                                   |
|  | possible here                                                              |                                                                                        |
|  | It is clear that the ADC (                                                 | nower consumption limits the                                                           |
|  | design to small channel                                                    | s counts.                                                                              |
|  | But times are changing.                                                    |                                                                                        |





# **Common Front End**

 Join effort to have one ASIC for 2 projects. Or at least large common parts.



#### LCTPC (AIDA)

- specifications derived from SALTRO16 (slower, low cap)
- Muon CMS upgrade :
- First option : VFAT3 ASIC = PSD chip
- Second option : GdSP ASIC
- Specifications derived from previous VFAT2 (faster, high cap)







- Other experiments (Alice Di-Muon ...) express their interest
  - "Longer" peaking time
  - "Obsolete" since SAMPA project was launched





## **FE specifications**

| Parameter                       | FE (VFAT3/GdSP)            | unit       | Remarks          |  |
|---------------------------------|----------------------------|------------|------------------|--|
| Input capacitance *             | 5 - 10 - 30 - 60 - 80      | рF         | Simulation cases |  |
| Shaper peaking times            | 25 - 50 - 75 - 100 - 200 - | ns         | programmable     |  |
|                                 | 400                        |            |                  |  |
| Shaper order **                 | 3rd order                  |            |                  |  |
| Input Leakage current           | 10                         | <b>n A</b> |                  |  |
| compensation                    | 10                         | IIA        |                  |  |
| Sensitivity ***                 | From 1.25 to 50            | mV/fC      | programmable     |  |
| Polarity                        | dual                       |            |                  |  |
| Dynamic range                   | 200 (400 for dimuon)       | fC         |                  |  |
| Linearity Error : small charges | <                          | %          | up to 100 fC     |  |
| Linearity Error : high charges  | <5                         | %          | up to 200 fC     |  |
| Power consumption               | <2                         | mW/chan.   | Power cycling    |  |
| Power supply voltage            | 1.5                        | V          |                  |  |
| Noise                           | 1100                       | e-         | @ Tpeak = 100 ns |  |
|                                 |                            |            | @ 2 mW/chan      |  |
|                                 |                            |            | @ Cin = 30pF     |  |
| Technology                      | IBM 130nm                  |            |                  |  |

\* Stability at 5pF, not all shaping time available (ie. Cd = 80pF and Tp = 25ns)

\*\* I<sup>st</sup> order for Tp = 25ns

\*\*\* Not all gains available at all peaking times

Design driven for power consumption optimization





• Technology :

IBM 130nm (Power supply 1.5V)

- Architecture :
  - Pre-amp in CSA configuration
  - Shaper : MFB filter
  - Output : Differential buffer







#### • Architecture :

- Pre-amp in CSA configuration
- Shaper : MFB filter
- Output : Differential buffer



- Height : 80 µm 64 channels ⇔ 5.12 mm
- Width : 3.230 mm

```
/!\ LCTPC /!\
Impact of technology node
on ASIC size
Integration vs Design
```





## **CFE1 ASIC**







# **CFE1 simulation results**

#### Simulations results with :

- Pad on analogue signals
- FE : full parasitics

| Parameter     |            | AFTER [I]                               | VFAT2 [2]                    | SAltro [3]                   |
|---------------|------------|-----------------------------------------|------------------------------|------------------------------|
| Technology    |            | AMS 0.35                                | IBM 0.25                     | IBM 0.13                     |
| Noise         |            | 690e <sup>-</sup> ⊕13e <sup>-</sup> /pF | $500e^{-} \oplus 40e^{-}/pF$ | $650e^{-} \oplus 15e^{-}/pF$ |
| Shaping time  |            | 120 ns                                  | 22 ns                        | 120 ns                       |
| Dynamic range |            | 240 fC                                  | 12 fC                        | 150 fC                       |
| Input         | transistor | 800 µA                                  | 600 µA                       |                              |
| current       |            |                                         |                              |                              |

| Input capacitance | Noise    | Peaking   | Gain    |                    |
|-------------------|----------|-----------|---------|--------------------|
|                   | (ENC)    | time (ns) | (mV/fC) |                    |
| Cd = 10 pF        | 590      | 102.2     | 11.27   |                    |
| Cd = 30 pF        | 908      | 102.3     | 11.21   |                    |
| Slope             | 16 e-/pF | -0.1      | 0.06    | Absolute variation |
| X <sub>0</sub>    | 431 e-   | -0.1 %    | 0.5 %   | Relative variation |

Dynamic range : ~ 200fC Power consumption < 2mW Noise : 670 e- @ 15pF Tp = 100ns

- [1] P. Baron, "AFTER, an ASIC for the readout of the large T2K time projection chambers," in Nuclear Science Symposium Conference Record, 2007.
- [2] P. Aspell, "VFAT2 : A front-end system on chip providing fast trigger information, digitized data storage and formatting for the charge sensitive readout of multi-channel silicon and gas particle detectors," in TWEPP, 2007.
- [3] M. De Gaspari, "SAltro 16," [Online]. Available: https://espace.cern.ch/cms-project-GEMElectronics/SAltro%2016/Forms/AllItems.aspx.





## **CFE1 remarks**

#### PRO

- Fit from low input capacitance to "large input" capacitance.
- Fit from short shaping time to "long" shaping time.
- Functionalities and programmability.
- Power consumption.

#### Cons

- Layout could be improve !
  - Height of the channel.
  - MIM cap.
- Differential buffer. Design to drive output signal = 2 mW

#### The technology issue:

- Uncertainties on the future of IBM 130nm ?
- CERN is moving to TSMC technology.
- CERN is moving to 65nm technology.





# **New technologies**

- Design constrains due to deep-submicron process
  - Power supply voltage reduction
    - Change of architecture need to be validate
    - Strong inversion to weak inversion transistor operating point
  - Design rules increase
    - More simulation is needed at layout level to validate assess performances (Nwell effects ...)
  - Expensive
- Models are not systematically fit to our need
  - Especially noise models need to be validate

#### Trade off between "keeping up to date" and validation process





# **New technologies**

- Integration technology
  - Mixed technology nodes

### Advances in Bonding Technologies

(chip to chip, chip to wafer, and wafer to wafer)



Workshop on CMOS Active Pixel Sensors For Particle Tracking

> Bonn, Germany September 15-17 2014

1

18/09/2014





#### Next slides are backup

16

18/09/2014





- Architecture :
  - Pre-amp in CSA configuration
  - Shaper : MFB filter
  - Output : Differential buffer







- Architecture :
  - Pre-amp in CSA configuration
  - Shaper : MFB filter
  - Output : Differential buffer



With Pole-Zero Compensation – Without Pole-Zero Compensation ···



