

ILC and LCLS-II

SRF Construction Experience relevant to HEP

Marc Ross (SLAC LCLS-II)

HEPAP Accelerator R&D Subpanel

Outline

- 1. Industrialization of 1.3 GHz SRF technology
 - 1990's to present
 - TESLA, E-XFEL, and ILC (also CEBAF 12 GeV)
- 2. LCLS-II
 - Free Electron Laser at SLAC based on ILC / E-XFEL SRF
- 3. SRF for LCLS-II
 - Low cryogenic-loss cavities: 'N₂ doping' process developed by Fermilab
 - Multi-lab partnership
- 4. Implications for ILC

Before: TESLA Collaboration, XFEL, SRF R&D

2013: ILC TDR International Review (Feb)

Performance Demonstrations, Industrialization, Cost

2013: LCLS-II CW SRF Linac proposed to DoE – SC(BES) CD-0 (Aug), CD-1 (Aug 2014), CD-2/3 (3QFY15)

- 2014: High Q0 Process development (Apr Sep) Fermilab (lead), JLab, Cornell; (Cavities from FNAL)
- 2018: LCLS-II Cryomodule Construction Complete (Aug)

→ First light at end of FY2019

2018: US Infrastructure Qualified and Demonstrated

 \rightarrow ready for ILC or ?

SRF Cost Reduction / Risk Reduction through application

SCRF Cost Overview

A. Yamamoto: 2013.2.6

4

A Model for Cavity and CM Production and Qualification Process

Vertical Cavity Test Results at DESY: 1995-2006

CEBAF 12 GeV upgrade 12 GeV cavities: overall performance

Vertical Test; 1500 MHz 7 cell; 10% gradient correction

Jerrerson Lab 12 GeV C100 Cavity Final Emax

Jefferson Lab

Global Progress in ILC Cavity Gradient Yield

IPAC14: Courtesy: H. Weise

European XFEL An Accelerator Complex for 17.5 GeV

100 accelerator modules

Some specifications

- Photon energy 0.3 24 keV
- Pulse duration ~ 10 100 fs
- Pulse energy few mJ
- Superconducting linac. 17.5 GeV

2500

2000

10 Hz (27 000 b/s)

800 accelerating cavities 1.3 GHz / 23.6 MV/m

25 RF stations 5.2 MW each

SC Linac (~ 1 km)

EXFEL: 1/20 Scale Project on going, Industrialization being verified !!

1500

3000

SCRF Cavity Production

Gradients in average above specification (almost 300 cavities tested)

- Average usable gradient after delivery (26.8 ± 7.1) MV/m
- 2/3 of cavities can be used w/o further treatment
- 1/3 is getting additional treatm. -> usable grad. increased to (29.6 ± 5.1) MV/m

2014.6: # cavities produced > 300. Usable Gradient: $\sim < 30 > MV/m$

SCRF Cavity Production

Gradients in average above specification (almost 300 cavities tested)

- Average usable gradient after delivery (26.8 ± 7.1) MV/m
- 2/3 of cavities can be used w/o further treatment
- 1/3 is getting additional treatm. -> usable grad. increased to (29.6 ± 5.1) MV/m

2014.6: # cavities produced > 300. Usable Gradient: $\sim < 30 > MV/m$

Cryomodule System Test

DESY: FLASH

- 1.25 GeV linac (TESLA-Like tech.)
- ILC-like bunch trains:
- ♦ 600 ms, 9 mA beam (2009), ← Demonstrated 800 ms 4.5 mA (2012)
- ◆ RF-cryomodule string with beam →
 PXFEL1 operational at FLASH

KEK: STF/STF2

- S1-Global: completed (2010)
- Quantum Beam Accelerator (Inverse Llaser
 Compton): 6.7 mA, 1 ms ← Demonstrated
- CM1 test with beam (2014 ~2015)
- STF-COI: Facility to demonstrate CM assembly/test in near future

FNAL: ASTA

(Advanced Superconducting Test Accelerator)

- CM1 test complete
- CM2 operation (2013)
- CM2 with beam (soon)

2014/08/24, A. Yamamoto

XM-3 RF Test Results

AWLC'14, 14/05/2014

Gate valve

Eacc (VT)

Fe limit (VT)

CMTB

Will it work ? System Tests - Fermilab

Outline

- 1. Industrialization of 1.3 GHz SRF technology
 - 1990's to present
 - TESLA, E-XFEL, and ILC (also CEBAF 12 GeV)

2. LCLS-II

 Free Electron Laser at SLAC – based on ILC / E-XFEL SRF

3. SRF for LCLS-II

- Low cryogenic-loss cavities: 'N₂ doping' process developed by Fermilab
- Multi-lab partnership
- 4. Implications for ILC

Photons for Basic Energy Science (Material, Condensed Matter, Biology, Chemistry...)

LCLS-II Concept Use 1st km of SLAC linac for CW SCRF linac

LCLS-II Layout in SLAC Linac Tunnel

(only approximately to scale)

LCLS-II Objectives:

- Build 4 GeV (up to 300 micro-Amp) CW superconducting linac based on TESLA / ILC / E-XFEL 1.3 GHz technology
- Develop cavity process for high-Q0 production
- Develop CW cryomodule design and operations scheme for 110 W @ 2K / CM (or better) based on high-Q0 cavity process
- Use industrial capability for 1) dressed-processed-cavity, 2) coupler, and 3) vacuum-vessel/cold-mass production
- Adapt JLab 'CHL-2' (12 GeV Upgrade) Cryoplant for SLAC

10 to 100x lower current than ILC / XFEL

- (LCLS-II 60 micro Amp / EXFEL ILC 6 mA)
- → Matched LCLS-II loaded Q_L ~ 3e8; effective resonance width very narrow; BW few Hz
- Difficult with today's state-of-the-art cavity controls

LCLS-II: $6e6 < Q_L < 1e8$; nominal 4e7 BW 50 Hz ILC / XFEL: $1e6 < Q_L < 1.4e7$

<u>Microphonics / cavity resonance control → key R&D</u> <u>topics for low current CW linacs</u>

Also useful for ILC

LCLS-II Linac

Closely based on the *European XFEL / ILC / TESLA* Design Under development ~ 20 years with <u>> 1000 cavities</u> to be made and tested (inc. 800 for E-XFEL – completed 2016)

- Thirty-five 1.3 GHz 8-cavity cryomodules
- Two 3.9 GHz 8-cavity cryomodules
- Four cold segments (L0, L1, L2 and L3) which are separated by warm beamline sections.
- 280 1.3 GHz cavities
- 16 3.9 GHz cavities

HEPAP-ARP August 29, 2014 (M. Ross, SLAC)

Re-purposing the SLAC Tunnel

SLAC Linac Tunnel: 11 wide x 10 feet high

It will be a tight fit!

LCLS-II CM in 3-D

- A. 2.2 K subcooled supply
- B. Gas return pipe (GRP)
- C. Low temperature intercept supply
- D. Low temperature intercept return

HEPAP-ARP August 29, 2014 (M. Ross, SLAC)

- E. High temperature shield supply
- F. High temperature shield return
- G. 2-phase pipe
- H. Warm-up/cool-down line

CM, Feed Cap and Bypass and Vertical Transferline

Summary Schedule

	FY2013	FY2014	FY2015	FY2016	FY2017	FY2018	FY2019	FY2020	FY2021
Critical Decisions		CD-1 Approve Selection and Cost Range	CD-2 Approve Performance Baseline/ CD-3 Start of contruction			LCLS Downtime			CD-4 Approve Project Completion Sept 21
Design	Co Accelerator	onceptual Systems			Cryonian	t Engr Comp		-	
	Photon Syst	tems						-	
Prototype	Ac	Start Lyomod	ule Prototypes	Start CM Productio	rement, Fabrication,	Cryomodules prod con Installation & Test	mp Cryomodules in	stall comp Early Project Compet	tion
Construction Fabrication &		Awaru W Ph	Award Cr oton Systems	ryoplant Procu	Cryoplant Fab	Comp Cryoplant	Install Comp		
Installation		CLS-II: or	ne CM ev	/ery 3 we	eeks (agg	regate pr	oduction	of two la	ıbs)
		.C: one C	M every	week (U	S)				
Commissioning						Cryoplant Comn	nissioning Comp	-	
Environmental, Safety & Health	EA	A Preparation EA	FONSI PHAR Submit	tted to DOE					
Legend	(A) Actual	Completed	Planned Da	ta Date Le	evel 1 Milestone	Early Finish Milest	one Schedule	e Contingency Criti	cal Path

Outline

- 1. Industrialization of 1.3 GHz SRF technology
 - 1990's to present
 - TESLA, E-XFEL, and ILC (also CEBAF 12 GeV)
- 2. LCLS-II
 - Free Electron Laser at SLAC based on ILC / E-XFEL SRF
- 3. SRF for LCLS-II
 - Low cryogenic-loss cavities: 'N₂ doping' process developed by Fermilab
 - Multi-lab partnership
- 4. Implications for ILC

Motivation for High Q₀ R&D

- High Q₀ is a surrogate for low rf losses = low dynamic cryo heat load
- New Nb surface doping phenomenon with significantly lowered R_{s-BCS} and R_{s-residual} discovered 2012-2013
- Our mission: expedite development for use in LCLS-II

Motivation for High Q₀ R&D

Americas ILC Linac Cost Versus Cavity Gradient and Qo

Q₀ picture still looks good for LCLS-II, but new discipline will be required

HEPAP-ARP August 29, 2014 (M. Ross, SLAC)

FNAL IB4 Vacuum Oven

LCLS-II FAC Review, July 1-2, 2014

LCLS II vs. XFEL Industrial Cavity Processing Recipe comparison: Change 2 steps

High Q0 Program – a collaborative effort (Feb 2014 Plan)

- ~30 single-cell tests at Cornell, FNAL, and JLAB
 - By July 2014 (25 Tests Completed)
- 19 nine-cell prep / test at Cornell, FNAL, and JLAB
 - (All cavities to be supplied by FNAL)
 - By October 2014 →
- Performance verification in horizontal tests of 6 fully dressed cavities (3 Cornell / 3 Fermilab)
 - to understand Q₀ preservation
 - evaluate the effect of Helium vessel dressing on Q₀,
 - obtain Q₀ data under cryomodule-like conditions,
 - study residual magnetic fields for the shielding optimization,
 - develop optimized cool-down/thermal cycling procedures.
 - By November 2014

	First pass	Second	Q (2K,	Quench	
Fermilab – 9 cell Vertical tests (Aug 2014)16MV/m)[MV/m]					
TB9AES011	OK	ОК	3.4e10	21.5	
TB9ACC015	OK	ОК	3.5e10	24	
TB9ACC012	Quench (small removal for R&D)	~Ok	3.4e10	15.6	
TB9AES026	ОК		2.75e10	21.5	
TB9AES003	ОК	ОК	2.5e10	27	
TB9AES027	OK		4e10	 (FE admin limit at 18)	
TB9AES028	Q-switch/quench @ 14.5 (defect)	OK	4e10	25.5	
TB9AES020	Quench @ 14 (defect)	~ Ok	4.1e10	15.5	
TB9AES024					
TB9AES021	September 2014				

JLab 9-cell Vertical Tests (August 2014)

Cavity name	Q @ 2K, 16 MV/m	quench field (MV/m)	radiation onset
AES031	3.4E+10	17.4	none
AES032	2.6E+10	18.2	13 MV/m
AES033	3.4E+10	16.4	none
AES034			
AES035	September 2014		
AES036			

Cornell 9-cell VT status

N-Doped 9-cell	1 st Pass *	2 nd Pass **	Qo at 16MV/m, 2K	Quench	Status
AES018	Done	Done	3.2E10	21MV/m	
AES022	Done	On going (VT Sept 11 th)	2.0E10	24MV/m	FE limit, will be processed again
AES023	On going (VT Aug. 21 st)		3.4E10	14 MV/m	Ready for VT
AES029	On going (VT Aug. 28 th)				Bulk VEP, N2-dope tuning, done
AES030	On going (VT Sept 4 th)				Bulk VEP, N2-dope done

· · · · · · · · · · · ·

LCLS-II High Q0 R&D Program – Preliminary Results

High Q0 testing done at 3 labs: Fermilab (from 2012); JLab and Cornell (2014)

High Q0 Program 9 cell results				
	Q0	E_acc (MV/m)		
Average	3.26E+10	20.0		
Number of cavities tested; some multi-pass				
14				

Only one vertical test Q0 below 2.3E10

Initial results meet LCLS-II VTS High Q0 criteria

Field emission

- Contaminant-free assembly process
- Magnetic shielding to keep < 5 mGauss
 - Possible new features such as active external coils
- Cool-down rate
 - High rate of cool-down may be necessary
 - As much as 2 3 Kelvin/minute through 9.2 K transition temperature
 - Key may be high delta-T within Nb to "sweep out" magnetic flux
 - We have some concepts for fast cooling
 - Uniform cooling of bimetallic joints (? Requirement TBD)

Field Emission Onset

Thomas Jefferson National Accelerator Facility

TTC 14

Actear Matter - Quarks to Staff

Page 42

Effect of cool-down speed-through-transition

"Dressed" cavity results under different cooling regimes.

 Thermogradient-generated fields have no impact on Q in VT, slow cooling through T_c has dramatic effect.

> [fast ~1.8K/min; slow ~0.3K/min through 9.2K]

 Precautions will have to be taken in CM to obtain fast cooling through transition.

With Three Axis Magnetic Cancellation

LCLSII Cavity Tests in the Cornell one-cavity Horizontal-Test-Cryomodule (HTC)

 Small modifications were needed to host a 9-cell cavity (changes to 2phase line, cavity support).

Hasan's suggestion: "Double the frequency & apply high Q"

Triple? \rightarrow LCLS-II requires 16 3.9GHz 'harmonic linearizer' cavities. \rightarrow <u>Try high Q</u>

State of the art with ILC/XFEL protocol: (From H. Edwards / E. Harms:)

3.9 GHz	z cavity Q's at 1	5MV/m, 2K	
	date	Qo@15M HOM V	process, comments
9cell	20080201	2.8n	bcp, Flash
	20080722	1.8y	
	20080827	2.5n	
	20080207	2.2n	bcp, Flash
	20081027	2.1 y	
	20110607	2.8y	bcp
	20110630	2.8y	bcp, baked on stand, from Rs should be 1.28 higher than just bcp
	20140422	3.8n	bcp, baked at MP9, repaired cavity

Outline

- 1. Industrialization of 1.3 GHz SRF technology
 - 1990's to present
 - TESLA, E-XFEL, and ILC (also CEBAF 12 GeV)
- 2. LCLS-II
 - Free Electron Laser at SLAC based on ILC / E-XFEL SRF
- 3. SRF for LCLS-II
 - Low cryogenic-loss cavities: 'N₂ doping' process developed by Fermilab
 - Multi-lab partnership
- 4. Implications for ILC

Project Collaboration: SLAC couldn't do this without...

LCLS-II Director's Review, August 19-21, 2014

Cryomodule Production

- Follow as closely as possible XFEL industrialized path
 - Saclay (CEA) now assembling one cryomodule every two weeks
 - Both Fermilab and Jlab will have Saclay style production line
 - Guidance for touch-labor (cost) estimate
- Production-line development between three labs (and DESY)
 - (work-station development, tooling, touch-labor analysis collaborative effort)
- Desy and Saclay are special partners to LCLS-II

Assembly Hall : Workstations

Fermilab SRF

- FNAL has been building SRF Program since 2006
 - Extensive infrastructure can be used for LCLS II
 - Inspection, EP, tumbling, HPR, VTS, HTS, assembly, CMTS...
 - Ongoing SRF Program supports facility maintenance
 - Cavity & cryomodule design and fabrication (low β and 1.3 GHz)
 - Originally focused on ILC (XFEL CM design, starting point for LCLS II)
 - Now focused on CW applications (PIP II) => complements LCLS II
 - Material & Cavity Processing R&D now pursuing High Q₀ R&D
- Built three cryomodules of "LCLS II type" (pulsed operation)
 - CM1 successfully tested
 - CM2 currently being tested (most cavities reached 31.5 MV/m)
 - 3.9 GHz (successfully being operated in FLASH)
 - PIP II designs build off this experience

Capabilities and Infrastructure (existing): FNAL 1.3 GHz CM Assembly

52

Ginsburg - LCLS-II Director's Review, August 19-21, 2014

Jlab SRF Overview, previous projects

- ~1990, Jefferson Lab (Jlab) SRF Division was created to build the CEBAF accelerator
 - <u>43 cw cryomodules</u> housing 346 1500 MHz cavities
 - 42 standard 8 cavity cryomodules and 1 unique 2 cavity injector cryomodule
 - Peak production rate of <u>2 cryomodules per month</u>
 - Cryomodules/cavities exceeded specifications (~ factor of 2 in gradient and Q₀)
- ~1995, Jlab FEL
 - <u>4 cw high current</u> cryomodules, (3 ea 8 cavity and 1 ea 2 cavity)
 - Based on the CEBAF design
 - New HOM Damping and thermal management
 - Higher power RF power couplers, 8 and 50 kW (final 100 kW)
- ~2000, Spallation Neutron Source (ORNL)
 - 24 ea 3 or 4 cavity cryomodules, 23 production and 1 prototype cryomodule
 - Pulsed high power proton machine
 - 2 blank sheet cavity and cryomodule designs, medium and high beta
 - 18 months from start to first prototype cryomodule tested

~2010, Jlab 12 GeV energy upgrade, C100 cryomodule

- Blank sheet design
- 1500 MHz, 7 cell, Low Loss type (operating at ~20 MV/m) cavities
- Same footprint of old cryomodules resulting in a 40% increase in active length fraction
- <u>10 ea cryomodules built (80 cavities)</u>, tested and installed in CEBAF → similarities w E-XFEL

25 years experience 81 Cryomodules

JLab CM Assembly Area Work Flow

Uniquely Compact: everything in one building Infrastructure and tooling to be adapted to XFEL/Fermilab scheme

ILC Type 3+ CM Modifications for LCLS-II (components)

Component design – leverage existing designs optimally

- Cavities XFEL identical
- Helium vessel XFEL-like
- HOM coupler XFEL-like or –identical
- Magnetic shielding increased from XFEL/ILC to maintain high Q0
- <u>Tuner XFEL or XFEL-like end-lever style</u>
- <u>Magnet Fermilab/KEK design split quadrupole</u>
- BPM DESY button-style with modified feedthrough
- Coupler XFEL-like (TTF3) modified for higher QL and 7 kW CW

Concerns based on global experience

- <u>Tuner motor and piezo lifetime: Consider access ports</u>
- Maintain high Q0 by minimizing flux trapping: possible constraints on cooldown rate through transition temperature

inter-cavity connection showing tuner, bellows and coupler – EXFEL Cryomodule

E-XFEL cavity string assembly showing inter-cavity connection

Cavity string for LCLS-II showing modified lever-type tuner

Note tuner is on opposite side: tuner access vacuum tank port may be possible

Y. Orlov, 1.3GHz Cryomodule design, 06 June 2014

93

1.3GHz CM. Current Leads & Splittable Quad Magnet

Conduction cooled intercept to 2-phase He pipe for Quadrupole

Cryomodule Design and System Heat Loads, 13 Aug 2014

Outline

- 1. Industrialization of 1.3 GHz SRF technology
 - 1990's to present
 - TESLA, E-XFEL, and ILC (also CEBAF 12 GeV)
- 2. LCLS-II
 - Free Electron Laser at SLAC based on ILC / E-XFEL SRF
- 3. SRF for LCLS-II
 - Low cryogenic-loss cavities: 'N₂ doping' process developed by Fermilab
 - Multi-lab partnership

4. Implications for ILC

For ILC: Summary

Cavity / Cryomodule:

- Cost Validation : <u>few percent scale</u>
- Cost Reduction
 - Applied production v/v continued R&D
 - (tooling, infrastructure, and experience)
 - From C100 to EXFEL: factor 2 cavity cost reduction
 - (Hasan's target)
- Technical Risk Mitigation
 - <u>Demonstrate construction and performance</u> of ILC-type cryomodules for science in the US

For US, the work on ILC and now on LCLS II has brought together SRF programs in a way that maximizes collaboration, efficient sharing of IP, and facilities giving the most "bang for the buck".