study of new jet-clustering

Junping Tian (KEK)

Oct. 17 @ Asian Physics & Softwre meeting

status

 original	my variant
 $J_{\beta}(P_{\alpha}) \equiv E_{\alpha} - \beta rac{P_{\alpha}^2}{E_{\alpha}} = E_{\alpha} \left[(1 - \beta) + \beta v_{\alpha}^2 ight]$	$J(P_{\alpha}) = E_{\alpha}(1 - \frac{M_{\alpha}}{\Lambda})$
 V	Λ is kind of virtuality scale, can be tuned

- original version implemented; one variant invented
- a first look at jet purities, going to take a look at Higgs mass
- **b** tuning of either β or Λ is similar tuning of y cut
- for some jets it works same as durham, which seems promising that at least similar performance would be expected
- feature of global clustering might be helpful to incorporate likelihood of color-singlet system
- next step is to figure out what's the possible best likelihood for color-singlet system, and how to combine with jet function

new clustering code: kekcc:~tianjp/analysis/PostDBD/GeorgiClustering

jet purity check: energy fractions from color-singlet systems

Jet function:											
		$J_{\beta}(P_{\alpha})$	$(\alpha) \equiv E_{\alpha} - \beta \frac{P_{\alpha}^2}{E_{\alpha}}$	$(\alpha^{2}],$	original, $\beta=1$						
event #1											
Jets from Georgi Clustering (original, beta = 1)											
Jet	Mass	Energy	Func	Norm	CS	E1(%)	E2(%)	E3(%)	E4(%)	Np	
0	115.436	184.199	111.856	0.607258	1	63.0903	36.9097	0	0	34	
1	7.81184	97.4018	96.7753	0.993568	1	100	0	0	0	12	
2	11.0048	44.2489	41.512	0.938147	2	0	100	0	0	21	
3	0.251736	1.05797	0.998075	0.943384	2	0	100	0	0	2	
	J	ets from Du	rham Clust	ering							
Jet	Mass	Energy	Func	Norm	CS	E1(%)	E2(%)	E3(%)	E4(%)	Np	
0	34.766	117.681	-18.6956	-0.158867	2	42.6426	57.3574	0	0	32	
1	7.81187	97.4018	72.0388	0.739604	1	100	0	0	0	12	
2	3.68404	67.5756	59.2773	0.877199	1	97.7118	2.28824	0	0	4	
3	11.0048	44.2489	28.0172	0.633173	2	0	100	0	0	21	

benchmark code: kekcc:~tianjp/analysis/PostDBD/JetBenchmark

3

my variant

Jet function:

$$J_{\beta}(P_{\alpha}) \equiv E_{\alpha} - \beta \frac{P_{\alpha}^2}{E_{\alpha}} = E_{\alpha} \left[(1 - \beta) + \beta v_{\alpha}^2 \right],$$

$$J(P_{\alpha}) = E_{\alpha}(1 - \frac{M_{\alpha}}{\Lambda})$$

 Λ is kind of virtuality scale, can be tuned

event #1

Jets from Georgi Clustering (my variant, scale = 60)										
Jet	Mass	Energy	Func	Norm	CS	E1(%)	E2(%)	E3(%)	E4(%)	Np
0	7.81184	97.4018	72.0389	0.739605	1	100	0	0	0	12
1	11.5319	95.189	58.5986	0.615603	2	44.2007	55.7993	0	0	17
2	3.68404	67.5756	59.2773	0.877199	1	97.7118	2.28824	0	0	4
3	11.0048	44.2489	28.0173	0.633174	2	0	100	0	0	21
4	12.1619	22.4922	13.374	0.594605	2	36.0481	63.9519	0	0	15
	Jets from Durham Clustering									
Jet	Mass	Energy	Func	Norm	CS	E1(%)	E2(%)	E3(%)	E4(%)	Np
0	34.766	117.681	-18.6956	-0.158867	2	42.6426	57.3574	0	0	32
1	7.81187	97.4018	72.0388	0.739604	1	100	0	0	0	12
2	3.68404	67.5756	59.2773	0.877199	1	97.7118	2.28824	0	0	4
3	11.0048	44.2489	28.0172	0.633173	2	0	100	0	0	21

my variant

 $J(P_{\alpha}) = E_{\alpha}(1 - \frac{M_{\alpha}}{\Lambda})$

ev	rent	t #2

	\frown										
Jets from Georgi Clustering (my variant, scale = 60)											
Jet	Mass	Energy	Func	Norm	CS	E1(%)	E2(%)	E3(%)	E4(%)	Np	
0	16.1515	116.933	53.9781	0.461617	2	23.2905	76.7095	0	0	24	
1	11.2229	55.8273	34.9426	0.625905	2	0	100	0	0	25	
2	15.801	61.2749	29.0014	0.473301	1	91.2497	8.75035	0	0	32	
3	7.93389	41.463	30.4975	0.735537	1	98.495	1.50504	0	0	14	
4	22.9611	27.6794	6.4944	0.234629	2	29.9444	70.0556	0	0	36	
	Jet	s from Du	rham Clust	ering							
Jet	Mass	Energy	Func	Norm	CS	E1(%)	E2(%)	E3(%)	E4(%)	Np	
0	43.9904	150.39	-70.1338	-0.466346	2	27.4482	72.5518	0	0	57	
1	17.0479	61.9552	26.7483	0.431736	2	5.02137	94.9786	0	0	35	
2	7.8502	47.4272	35.0168	0.738327	1	97.6037	2.39633	0	0	22	
3	11.2406	43.4048	27.1416	0.625313	1	95.8272	4.17277	0	0	17	

5

back up

implementation of Georgi Jet-Clustering

- a test version of GeorgiClustering has been implemented, with #mini-jet = 25. (kekcc:~tianjp/analysis/PostDBD/ GeorgiClustering)
- ▶ number of combinations = $2^{25} \sim 32M$, CPU time ~ 10s / event.
- several bugs in SatoruJetFinder have been found and fixed when we need more then 20 mini-jets. (kekcc:~tianjp/soft/ MarlinReco/v01-10)
- surprisingly found that FastJetClustering(Processor) in current ilcsoft only supports kt type clustering; need a few efforts to support Durham (some one interested welcome to go ahead).

Jet function:

$$J_{eta}(P_{lpha}) \equiv E_{lpha} - eta rac{P_{lpha}^2}{E_{lpha}} = E_{lpha} \left[(1 - eta) + eta v_{lpha}^2
ight]$$

7

original $J_{\beta}(P_{\alpha}) \equiv E_{\alpha} - \beta \frac{P_{\alpha}^{2}}{E_{\alpha}} = E_{\alpha} \left[(1 - \beta) + \beta v_{\alpha}^{2} \right]$ generalized $J_{\beta}^{(n)}(P_{\alpha}) \equiv E_{\alpha}^{(n)} \left[(1 - \beta) + \beta v_{\alpha}^{2} \right]$

- a practical issue is to decide value of β, which is essentially a degree of penalty to jet virtuality.
- I started with constant β from 1 to N..., found 1 may be too small, would be somewhere between 3~4, still working on that.
- I found most probably the β needs be tuned, to reflect different jet sub-structure; one variant is being investigated.
- I'm now looking at some benchmark, purity of jet, color singlet, etc...

see following slides