$h \to \tau^+ \tau^-$ BR Study Status Shin-ichi Kawada

- No significant update in this week due to other work...
- Latest results can be found at LCWS14 (or next page)
- Still working on 250 GeV $\nu \bar{\nu} h$
 - expecting 30 40 % of $\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$, will be better than $M_h = 120$ GeV analysis
- Schedule:
 - finalize 250 GeV $\nu \bar{\nu} h$, then 250 GeV e^+e^-h and $\mu^+\mu^-h$, then 500 GeV

Current Numbers

250 GeV 250 fb ⁻¹	$q\overline{q}h$	$v\overline{v}h$	e^+e^-h	$\mu^+\mu^-h$
$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$	3.4%	46.0%	16.1%	14.7%

Today's talk

Extrapolation from $M_h = 120 \text{ GeV}$ Cut-based only will be analyzed with new sample

500 GeV 500 fb ⁻¹	$q\overline{q}h$	$v\overline{v}h$	e^+e^-h	$\mu^+\mu^-h$
$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$	4.7%	6.8%	31.2%	17.6%

will be re-analyzed with new sample