

PARTICLE ID STUDY AND ITS APPLICATION (@TPC SESSION)

Masakazu Kurata
The University of Tokyo

ALCW15, 04/20/2015-04/24/2015

FOR ANALYSIS IMPROVEMENT

- All the analyses are saturated within the present framework
 - Needs new idea
 - Especially, need to improve the results of Higgs self-coupling@500GeV
- Fundamental new variables might provide improvements of analysis tools @ILD, but not yet used well
 - dE/dx in TPC
 - Shower profiles in the calorimeters
- Particle ID will be available using those variables
- Will those variables give improvements to other analysis components?
 - Isolated lepton ID → of course!
 - Energy correction using PID → it is OK!
 - Flavor tagging using PID? → looks hopeful!
 - Hope for jet clustering? → need to try
 - →it is necessary to study them

DE/DX FROM TPC

- For improvement, using dE/dx is one of the powerful tools
 - Particle ID for each track will give a large impact to the analysis
 - Application to general analysis component is very wide
 - Lepton ID
 - Track energy correction
 - Flavor tagging
 - o Jet clustering?
- Important factor to use dE/dx is: fluctuation
 - TDR: measurement resolution is 5%
 - So, natural fluctuation from simulation is within 5% without detector effect
- dE/dx definition:

•
$$\frac{dE}{dx} = \frac{energy \ deposit}{flight \ path \ in \ the \ hit(TPC)}$$

- dE/dx can be calculated at any hit point
- Truncated mean is calculated as track dE/dx

$$\left\langle \frac{dE}{dx} \right\rangle = \frac{1}{n} \sum_{i}^{n} \frac{dE_{i}}{dx_{i}}$$
 upper 30%, lower 8%(important!) hits are discarded

to avoid Landau tail(next slide)

→optimization is necessary

DE/DX FROM TPC @ILD

- Fluctuation of dE/dx using various type of tracks
 - Fluctuations of each particle/each momentum range:
 - 3 (<5)%!!
 - Including detector effect is necessary
 - o Do you have any idea?

ILD Preliminary

- Momentum dependence of dE/dx
 for each particle
 - Polar angle dependence corrected
 - Num. of Hits dependence corrected
 - Scale to $\left\langle \frac{dE}{dx} \right\rangle = 1.0$ for MIP pion

DE/DX FLUCTUATION

Fluctuation of dE/dx using various type of tracks

Using truncated mean

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

RMS(90) is taken for fluctuation

FIRST APPLICATION - ISOLATED LEPTON ID

- Lepton ID for single lepton using likelihood method
 - Lepton likeliness: $L = \frac{\prod s}{\prod s + \prod b}$,
 - Variables: traditional variables(Ecal/(Ecal+Hcal), E/P, D0, Z0, cone energy)
 - And using dE/dx(convert to χ^2) & shower profiles
- Signal is $HH\rightarrow (bb)(WW*)\rightarrow (bb)(I\nu jj)$

- Signal detection efficiency set almost same efficiency
- Background rejection efficiency:

Single lepton ID	Cut based	Old likelihood	New likelihood
Signal(%)	98.1	98.1	97.8
ttbar - all hadronic(%)	7.9	3.1	2.3

- Improvement of all hadronic event rejection: ∼30%
- Note: lepton energy threshold is loosened on likelihood_new
 - o From E(lep)>15GeV \rightarrow E(lep)>10GeV

PARTICLE ID @ILD

- New variables make Particle ID available
 - How are particles identified as each particle type?
- Construct Particle ID algorithm:
 - Based on Bayesian approach: define posterior probability
 - Make "rejected" category:
 - Track is rejected if its posterior probability is below threshold
 - Those tracks are moved to pions
- Overall ID efficiency of tracks in jets:
 - Electron can be identified almost perfectly(>90%)
 - Muon ID eff. is \sim 70% \rightarrow due to low energy muons(μ/π separation)
 - Hadron ID effs. are $62\% \sim 75\%$

LOOK MORE

Momentum Dependence of Particle ID efficiency

Momentum ranges where PID is good/bad

- Electron ID is good
- PID efficiency is >60% @1GeV/c~20GeV/c
- Low momentum μ / π separation is difficult
- Too low momentum PID is not effective(tracking is good?)

VERTEX MASS USING PID

- Can Particle ID be used for flavor tagging improvement?
 - Checking vertex mass distribution
 - Vertex is from LCFIPlus
 - How much effect on vertex mass?
- Check D meson reconstruction
 - Track energy correction using PID
 - How much D meson mass is close to PDG value $(1.869 \pm 0.0001 \, \text{GeV/c}^2)$?
 - How much does wrong PID destroyD meson mass?

 $\rm m_D = 1.865 \pm 3\,\sigma$ is defined as D meson mass range

m _D -1.000 ± 00 is defined as D meson mass range			
status	Inside	outside	
PID Correct(num. of vtx)	550	(6940)	
PID reversed(num. of vtx)	83	77	
Reversed PID is near nominal D mass	22	77	

VERTEX CLASSIFICATION - A CLUE FOR NEXT STEP

- o Different vertex patterns have different vertex mass patterns
- o e.g. 1) same num. of tracks with different particle patterns
 - K+ π vs. π + π
 - From third vertex in bjet

- o e.g. 2) different num. of tracks with same particle
 - $\pi + \pi$ vs. $\pi + \pi + \pi$
 - From third vertex in bjet

HOPE FOR FLAVOR TAGGING IMPROVEMENT

- For flavor tagging improvement
 - Vertex mass is the key to separate heavy/light flavor vertex
 - Many pi0s will escape from B/D vertex \rightarrow checked that using MC truth
 - Mass resolution will be degrade due to escaping neutrals
 - Is there possibility to recover pi0s which escape from vertices?
- We are studying the possibility of vertex mass recovery using pi0s
 - Pi0 vertex finder which vertex is the π^0 coming?
- Finding vertex of pi0s
 - Very difficult to identify vertex depends on detector configuration
 - Making the best of decay kinematics
 - Using TMVA to find pi0 candidates from the vertex
 - Comparing vertex mass distribution
 - Sample: using qqHH@500GeV samples(so many tracks & pi0s in events)

11

o Goal: flavor tagging efficiency improvement!

INPUT VARIABLES TO CONSTRUCT A GENERAL CLASSIFIER

- Getting general num. of particles are used as input variables
 - Num. of e/ $\mu/\pi/K/p$ in the vertices using particle ID
 - Those variables will work as variables for vertex classification in the MVA classifier
- I have constructed the 3 types of MVA classifiers:
 - Jets with 2 vtx secondary and third vertex
 - Jets with 1 vtx secondary vertex only
 - Using b jets
- MVAoutput example
 - Set operation point using num. of pi0s to be attached to vertices

VTX MASSES

- Vtx mass distributions for each vertex pattern(ntrk)
 - not so bad
 - Difference is mainly coming from combinatorial problem of gamma pairing

GLANCE AT OTHER CASE

- 2 vertices in bjet
 - Secondary vertex 4tracks case

- o Third vertices allow all the track patterns
- o Attach pi0s to both of the vertices using pi0 vertex finder

VERTEX MASS RECOVERY EFFECT ON FLAVOR TAGGING

- Construct a "toy" flavor tagger
 - Input variables are obtained from LCFIPlus
 - Input variable selection is too primitive!
 - Only vertex mass is replaced to recovered vertex mass
 - Compare with ROC curve

For more precise study, need to step into LCFIPlus

SUMMARY, PROBLEMS AND PROSPECTS

- Explore some fundamental variables for analysis improvement
 - dE/dx in TPC and shower profile
- o dE/dx and shower profile information provide \sim 30% improvement for Isolated lepton ID@10-20GeV/c
- Studying particle ID:
 - Hadron ID eff. is $62\% \sim 75\%$
 - Energy correction effect is very good for D meson reconstruction
 - Vertex mass recovery is hopeful using particle ID
- Flavor tagger improvement:
 - There seems hope for attaching pi0s to vertices
 - Vertex mass recovery is reasonable
 - o Of course, many checks are necessary
- o Vertex mass recovery will provide better separation on b/c jets!
 - Recovered vertex mass seems to bring better flavor tagger!
 - Finally, check the flavor tagging effs. in LCFIPlus!
- What is a next step using PID? advantage of TPC!

BACKUPS

MVA - USING TMVA

- o Input variables to be used
 - Secondary vertices which don't have third vertex

TESTING OF C VERTEX CASE

Attaching pi0s to c vertex using same classifier

So far, no strange behavior

ILD Preliminary

2 tracks

Higgs Coupling Analysis

ZH→ZHH

SOME PLOTS

- Num. of pi0s to be attached →determine MVAcut by it
- Where do pi0s really come from?
 - Many pi0s from primary are mis-attached to the vertices
 - Now, that is limited by detector configuration(can't determine exact gamma direction)
 - To some extent, an idea to catch gamma direction is necessary

THE MOST REALISTIC SITUATION

- After an event occurs, we only measure:
 - Charged particle information 4-momentum, and particle type(PID)
 - Neutral particle information 4-momentum of gamma or stable hadrons
 - We have no direct information of pi0s
- We need to get pi0 information from gammas!
 - Gamma finder choosing gamma candidates from neutral particles
 - Pi0 reconstruction gamma pairing from gamma candidates
- In such situation, how is the vertex mass recovery?
 - How is neutral hadron contamination effect?
 - How is gamma mis-pairing effect?
- About pi0 reconstruction, I have already talked at previous talk
- By using that pi0 reconstruction, attaching pi0 candidates and compare the vertex mass