

Report from CALICE DAQ Task Force

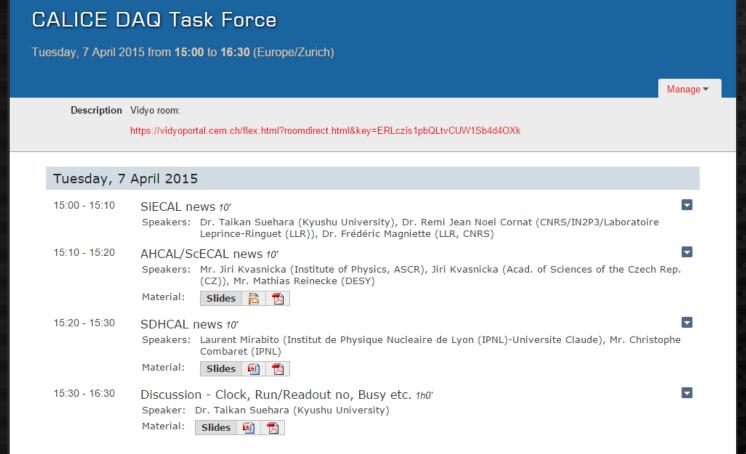
Taikan Suehara (Kyushu University, Japan)

CALICE DAQ Task Force

- Experts' meeting discussing common DAQ
- Members
 - Silicon: R. Cornat, F. Magniette, T. Suehara
 - Scintillator: J. Kvasnicka, M. Reinecke
 - Semi-digital HCAL: L. Mirabito, C. Combaret
- 2 years of mandate
- ~ 1 meeting per month
 - 4 meetings held

Targets

- Common DAQ
 - Common clock and acquisition cycle (AC)
 - Synchronized data taking and event matching
 - Common run control
 - Interface to upper control (TLU?)
- Combined testbeam
- Minimize total work by sharing tasks


Past meetings

- 1. 10 Dec 2014
 - Task overview
 - Select coordinator
- 2. 19 Jan 2015
 - Overview each subsystem
- 3. 4 Mar 2015
 - Discussion on clock
- 4. 10 Apr 2015 (wo/ Si experts)
 - Discussion on BX, Acq#, Run, Timestamp etc.

Indico

https://agenda.linearcollider.org/category/156/

Public

Master clock

- 'Master CCC' will provide clocks to each CCC
- 5 MHz is the basic clock corresponding to BX (or go into the real ILC BX period??)
- Need 50 MHz for Silicon because no PLL in Si-CCC (maybe done in master CCC)
- Scintillator and SDHCAL can produce their clock from the master clock
- Clock will be communicated via either HDMI or LEMO

Synchronization (Tentative)

- BX synchronization
 - Each detector has different inactive time after the start_acq
 - Master CCC sends start_acq
 (via either fast command or LEMO)
 with configurable delay (set by PC)
 to each port to synchronize livetime of each
- Busy
 - Treated by Master CCC to determine stop_acq and next start_acq
 - Should be sent from each subsystem

Synchronization (2) (Tentative)

- Acquisition cycle (or readout cycle)
 - Use AC counter from each subsystem to check the synchronization
 - Start from 0 at each run
 - Cross-check of 'Spill' sync by time-stamping (at lowest possible level of each subsystem)
- Run
 - Common run number notation:
 XXXYYYYY, XXX is the common TB number
 - No limit for the run length typical run period should be O(1h) - O(1d)

Who provides 'Master-CCC'?

- Scintillator
 - Zedboard with Xilinx Zync (FPGA + ARM CPU)
 (commercial, ~300 EUR/board)
 - + Mezzanine (can be provided by DESY/Mainz)
 - Firmware is in active development (DESY / Mainz? / possibly Kyushu?)
- SDHCAL
 - No manpower
- Silicon
 - **-?**

Software

No discussion yet

- EUDAQ
- LCIO
- etc.

Current priority to specify baseline design of hardware of common DAQ

A few word about recent Kyushu activity

SKIROC2 BGA testboard

SKIROC2 BGA testboard

- Delivered at March
 - Two boards on 1st batch one is in modification
- Based on OMEGA TB
 - QFP → BGA
 - Two kind of sockets Ironwood & SER (jp)
 - Connector for sensor
- Two interface
 - Readout by OMEGA FPGA (worked last Friday!)
 - Readout by Silicon DIF (not tested yet)

DAQ activity plans in Kyushu

- Testbeam analysis (H. Hirai's talk)
- Investigate various characteristics of BGA SKIROC with the testboard
- FEB11 production (in plan)
- Combined DAQ
- Online monitor
- Automatic test of sensor/electronics
 - Laser, RI (for crosstalk, gain etc.)

•