Update on Higgs self-coupling analyses for ILD.

$\label{eq:claude-Fabienne Dürig^1} \underbrace{ \mathsf{Claude-Fabienne Dürig^1}}_{\mathsf{Masakazu Kurata}^3}, \mathsf{Jenny List}^1, \mathsf{Keisuke Fujii}^2,$

¹DESY Hamburg, Germany ²KEK, Japan ³University of Tokyo, Japan

ALCW15, April 24th 2015

Introduction

 precise measurement of shape of SM Higgs potential via Higgs self-coupling

$$\mathsf{V}(\eta_{\mathsf{H}}) = rac{1}{2}\mathsf{m}_{\mathsf{H}}^2\eta_{\mathsf{H}}^2 + \lambda \mathsf{v}\eta_{\mathsf{H}}^3 + rac{1}{4}\lambda\eta_{\mathsf{H}}^4$$

> one must observe double Higgs production

- test mechanism EWSB and mass generation
- test of electroweak baryogenesis
- test extended nature of Higgs (THDM, SUSY)

Higgs Self-Coupling Analyses at ILC

Existing DBD full simulation analyses

studies performed with low-p_T $\gamma \gamma \rightarrow$ hadrons beam background without low- $p_{T} \gamma \gamma \rightarrow$ hadrons beam background

@ 500 GeV

@ 1 TeV

- > ZHH \rightarrow Z(bb)(bb) for m_H = 125 GeV
- $\succ vvHH \rightarrow vv(bb)(bb)$ for $m_H = 125$ GeV
- > ZHH \rightarrow Z(bb)(WW) for m_H = 125 GeV > $\gamma\gamma$ HH $\rightarrow\gamma\gamma$ (bb)(WW) for m_H = 125 GeV

ILC white paper: Higgs self-coupling projections

(full simulation w/ $m_H = 120$ GeV, extrapolated to $m_H = 125$ GeV)

		5	00 GeV	/ 500 GeV+1 TeV					
	Scenario	А	В	С	А	В	С		
	Baseline	104%	83%	66%	26%	21%	17%		
	LumiUP	58%	46%	37%	16%	13%	10%		
	500 GeV:	500 (160	0)fb ⁻¹	P(e ⁺ e ⁻)=(0.3,-0.8)					
1 TeV: 1000 (2500)fb ⁻¹				P(e ⁺ e ⁻)=(0.2,-	0.8)			

Scenario A: HH → bbbb ✓ Scenario B: adding HH \rightarrow bbWW \checkmark , expect 20% relative improvement Scenario C: analysis improvement (jet-clustering, kinematic fit, flavor tagging, matrix element method, etc.), expect 20%

relative improvement (ongoing)

Higgs Self-Coupling Analyses Strategy

General event selection strategy:

- isolated lepton selection or rejection
- 2 $\gamma\gamma$ -overlay removal
- 3 cluster particles into jets and get flavor tag information
- 4 missing energy or visible energy requirement
- 5 pair jets to form signal bosons and dominant backgrounds
- 6 each dominant background is suppressed by a separate neural net

Strategic difficulties:

- > very small number of signal events
- > irreducible diagrams: significantly degrade self-coupling sensitivity
- > flavor tagging and isolated lepton selection: need very high efficiency and purity
- > Higgs mass reconstruction: mis-clustering, wrong jet-pairing
- > neural net training: train separate neural nets, large statistics needed

there are several key points for potential improvement in analyses expect $20\%^{\star}$ improvement of Higgs self-coupling precision

 \star with respect to Snowmass

Application of Kinematic Fits

one possibility is use of kinematic fits:

- \blacktriangleright find right jet pairing \rightarrow improved jet/boson assignment
- \blacktriangleright improved mass resolution \rightarrow clearer signal/background separation
- \blacktriangleright testing of fit hypothesis \rightarrow use fit probability for better signal/background separation

> tool to improve jet energy and invariant mass resolution

- > precise initial states at ILC are ideal for application of kinematic fits
- > number of 4-vectors, representing final state particles, is fitted under constraints

```
E, p conservation

invariant mass: M_{ij} = X \text{ GeV},

M_{ij} = M_{ik},

M_{ij} = (X \pm Y) \text{ GeV}

\downarrow
```

variation of measured quantities under condition that certain imposed constraints are fulfilled

Talk focusses on kinematic fitting \rightarrow results are presented for analyses without overlay

ZHH (HH \rightarrow bbbb) @ 500 GeV - Kinematic Fitting

Perform analysis for $m_H = 125$ GeV, assuming $\mathcal{L}=2$ ab⁻¹ of data, and P(e⁺e⁻)=(0.3,-0.8)

 $Z \rightarrow l\bar{l}$. HH $\rightarrow b\bar{b}b\bar{b}$ $(10\% \times 60\% \times 60\% \approx 3.6\%)$

 $Z \rightarrow \nu \bar{\nu}$. HH $\rightarrow b \bar{b} b \bar{b}$ $(20\% \times 60\% \times 60\% \approx 7.2\%)$

 $Z \rightarrow q\bar{q}, HH \rightarrow b\bar{b}b\bar{b}$ $(70\% \times 60\% \times 60\% \approx 25\%)$

DESY

Preliminary results presented at LCWS14 (without overlay)

decay channel	signal	background	significance		Г		
			excess	measurement		cross section: $\frac{\Delta \sigma_{\text{ZHH}}}{\Delta \sigma_{\text{ZHH}}} = 32.6\%$	
$ZHH \rightarrow l^- l^+ HH$	3.0	4.3	1.16σ	0.91σ		σZHH σZHH	
	3.3	6.0	1.12σ	0.91σ			
$ZHH \rightarrow \nu \bar{\nu} HH$	5.2	6.9	1.63σ	1.37σ			
$ZHH \rightarrow q\bar{q}HH$	9.2	20.9	1.82σ	1.64σ		Higgs self-coupling: $\frac{\Delta \lambda}{\lambda} = 53$.	
	7.7	23.5	1.45σ	1.31σ	L		

ZHH (HH→bbbb) @ 500 GeV - Kinematic Fitting

- > application of kinematic fits to analysis
- ➤ for now: investigation of search mode IIHH
- useful in current analysis strategy

mass distributions as input parameters for neural net training

- → especially: ZHH vs. ZZH/ZZZ (backgrounds have same final state particles as signal)
- ≻ change analysis strategy
 - → test different fit hypotheses for signal and background
 - ightarrow use information obtained from the fit $(\chi^2, \mathsf{P}(\chi^2))$
 - ightarrow add to analysis (neural net input or cut)

test different fit hypothesis

ZHH (HH→bbbb) @ 500 GeV - Kinematic Fitting

preliminary results with kinematic fit applied to IIHH search mode (no overlay)

	decay channel	signal	background	significance	
				excess	measurement
LCWS14	$ZHH \rightarrow l^{-}l^{+}HH$	3.0	4.3	1.16σ	0.91σ
		3.3	6.0	1.12σ	0.91σ
ALCW15	$ZHH \rightarrow l^- l^+ HH$	3.0	3.2	1.32σ	0.99 <i>o</i>
		4.4	6.8	1.43σ	1.18σ
	$ZHH \rightarrow \nu \bar{\nu} HH$	5.2	6.9	1.63σ	1.37σ
	$ZHH \rightarrow q\bar{q}HH$	9.2	20.9	1.82σ	1.64σ
		7.7	23.5	1.45σ	1.31σ

20% improvement in IIHH mode due to kinematic fitting!

ongoing work:

investigation of kinematic fit in $\nu\nu\text{HH},$ qqHH

so far: ISR in samples, but not considered in fit

ISR treatment in fit under investigation \rightarrow work ongoing

Claude Fabienne Dürig | Higgs self-coupling at the ILC | ALCW15, April 24th 2015 | 7/14

HH→bbWW Search Mode

> HH \rightarrow (bb)(bb) golden channel (b-tag)

> HH \rightarrow (bb)(WW) other search mode add to analysis improve final result (20% relative improvement expected)

DBD full simulation $ZHH \rightarrow Z(bb)(WW)$

> at
$$\sqrt{s} = 500 \text{ GeV}$$

> m_H = 125 GeV (w/o overlay)
> $\mathcal{L}=2 \text{ ab}^{-1}$

DBD full simulation $\nu\nu$ HH \rightarrow $\nu\nu$ (bb)(WW)

> at
$$\sqrt{s} = 1$$
 TeV
> m_H = 125 GeV (w/o overlay)
> $\mathcal{L}=2$ ab⁻¹

@ 500 GeV	$WW \rightarrow (qq)(qq)$	$WW{\rightarrow}(qq)(Iv)$	@ 1 TeV	$WW \rightarrow (qq)(qq)$	WW ightarrow (qq)(Iv)
Z→bb	8 jets	l + 6 jets	Z→bb	8 jets	l + 6 jets
Z→cc	8 jets	I + 6 jets	Z→II	ll + 8 jets	-
Z→II	ll+6 jets	3I + 4 jets	ννΗΗ	6 jets $+E_{miss}$	-

Masakazus talk on Monday more information on analysis update \rightarrow kinematic fit

further improvements: lepton-ID for $W \rightarrow I\nu$ based on dE/dx and cluster shape analysis

 \rightarrow Masakazus talk on Tuesday (LCTPC)

HH \rightarrow bbWW @ 500 GeV/ 1 TeV - Kinematic Fit

- ► at $\sqrt{s} = 500$ GeV investigated channel ZHH \rightarrow Z(bb)(WW) \rightarrow (bb)(bb)(lvqq)
- test of different fit hypotheses
 - \rightarrow better mass resolution
 - \rightarrow masses as input for MVA classifiers

conference	search channel	significance
AWLC14	I + 6 jets	0.41 o
ALCW15	I + 6 jets	0.43 <i>o</i>

5% improvement in search mode due to kinematic fitting

ongoing: further investigation apply to ZHH all hadronic

- > at $\sqrt{s} = 1$ TeV investigated channel $\nu\nu$ HH \rightarrow $\nu\nu$ (bb)(WW) \rightarrow ($\nu\nu$)(bb)(qqqq)
- apply kinematic fitting for
 - \rightarrow better mass resolution
 - ightarrow masses as input for MVA classifiers

conference	search channel	significance
LCWS13	ννΗΗ	1.77σ
ALCW15	ννΗΗ	1.96 o

10% improvement in search mode due to kinematic fitting

ongoing: apply to other search mode $\nu\nu$ HH \rightarrow ($\nu\nu$)(bb)($l\nu$ qq)

vvHH (HH \rightarrow bbbb) @ 1 TeV - Update

measurement assuming $\mathcal{L}=2$ ab⁻¹ and $\mathsf{P}(\mathsf{e}^-,\mathsf{e}^+)\!=\!(\text{-}0.8,\!+0.2)$

> existing DBD full simulation of $\nu\nu$ HH $\rightarrow\nu\nu$ (bb)(bb) for m_H = 120 GeV (LC-REP-2013-003)

Update study for $m_{H}=125~\text{GeV}$ without and with low-p_T $\gamma\gamma \rightarrow$ hadrons beam bgrd

same analysis strategy as in LC-REP-2013-003

> result for $m_{\rm H} = 120$ GeV without $\gamma \gamma \rightarrow$ hadrons bgrd (extrapolation to $m_{\rm H} = 125$ GeV)

significance 4.3 σ (extrapolated 3.6 σ)

new preliminary results for m_H = 125 GeV

without overlay: significance 3.6σ with overlay: significance 2.7σ expected for $m_{\rm H} = 125$ GeV: σ (WWfusion) reduced by 12% BR(H \rightarrow bb) reduced by 20%

at 1 TeV $\gamma\gamma$ \rightarrow hadrons events overlaid per interaction: < N $_{\gamma\gamma}$ > =4.1

Preliminarily achieved significance of 3.6σ w/o overlay consistent with extrapolation! However, significant impact of overlay \rightarrow significance is 25% worse than extrapolation!

for all DBD benchmark analyses overlay removal exclusive k_T jet-clustering sufficient more differential strategy needed here

- > verify modeling of low-p_T $\gamma\gamma \rightarrow$ hadrons
- between the develop more sophisticated tools (exploit full power of high granularity detector)

Summary of Updates

@ 500 GeV : ZHH (HH→bbbb) by Claude Dürig (DESY) investigation of kinematic fitting; applied to leptonic search channel (w/o overlay) \rightarrow 20% improvement in IIHH ongoing: application of kinematic fits to search channels $\nu\nu$ HH & ggHH investigation of ISR in fit @ 500 GeV : ZHH (HH→bbWW) by Masakazu Kurata (Tokyo University) **@** 1 TeV : $\gamma\gamma$ HH (HH \rightarrow bbWW) investigation of kinematic fitting: applied to one ZHH search mode (w/o overlay) \rightarrow 5% improvement applied to one $\nu\nu$ HH search mode (w/o overlay) ongoing: \rightarrow 10% improvement further investigation needed

apply kinematic fit to other search modes

@ 1 TeV : $\nu\nu$ HH (HH→bbbb) by Junping Tian (KEK) update of analysis for m_H = 125 GeV, considering overlay without overlay: significance of 3.6σ

with overlay: significance of $2.7\sigma \rightarrow$ significant impact of overlay \rightarrow significance 25% worse

Sensitivity of Higgs self-coupling λ in BSM

deviation from λ_{SM} value indicates new physics \rightarrow high precision measurement needed!

	$\Delta \ \mathrm{hVV}$	Δ htt	$\Delta~{\rm hbb}$	Δ hhh
Mixed-in Singlet	6%	6%	6%	18%
composite Higgs	8%	tens of $\%$	tens of $\%$	tens of $\%$
MSSM	< 1%	3%	10%, 100%	2%, 15%
			arX	iv:1206.3560

if BSM, then $\lambda_{\mathsf{SM}} < \lambda < \lambda_{\mathsf{SM}}$

in many BSM models \rightarrow large deviations expected in other Higgs couplings, not only λ electroweak baryogenesis (THDM) large deviation expected only in λ ($\lambda \geq 1.2 \cdot \lambda_{SM}$)

Sensitivity of Higgs self-coupling λ in BSM

BSM scenario: improved accuracy expected (i.e. electroweak baryogenesis: $\lambda > \lambda_{SM}$)

 $\lambda < \lambda_{\mathsf{SM}}
ightarrow
u
u \mathsf{HH}$ at $1 \; \mathsf{TeV}$

example: $\lambda = 0.5 \cdot \lambda_{SM}$

$\lambda > \lambda_{\mathsf{SM}} o \mathsf{ZHH}$ at 500 GeV

example: $\lambda = 2 \cdot \lambda_{SM}$

- > σ_{ZHH} enhanced by 60%
- ▶ sensitivity factor reduced (1.73 → 1.08)
- > $\Delta\lambda/\lambda$ improved by factor of 2

both cases:

- > λ can be measured to 14% precision
- $> 7\sigma$ discovery

Summary and Outlook

- > measuring Higgs self-coupling is fundamental task for next generation LC
- > direct determination of Higgs potential through double Higgs production
- > precise measurement important to get insight into new physics
- ▶ if BSM \rightarrow expect deviations from λ_{SM} value

 $\rightarrow \lambda_{\text{SM}} < \lambda < \lambda_{\text{SM}} \rightarrow$ better measurement accuracy!

- > investigate different starting points for improvement
- 20% relative improvement of accuracy possible by improving analysis methods
- main project presented today kinematic fit
 - \rightarrow very promising in all existing Higgs self-coupling analyses
 - \rightarrow improvement of 5% up to 20% depending on search modes
 - \rightarrow further investigation ongoing \rightarrow investigate other search channels
 - \rightarrow update all analysis results
- more projects ongoing, not presented here (jet clustering algorithm, matrix element method, overlay removal strategy)

> potential improvement of Higgs self-coupling to $\approx 40\%$ at $\sqrt{s} = 500$ GeV

BACKUP SLIDES

Claude Fabienne Dürig | Higgs self-coupling at the ILC | ALCW15, April 24th 2015 | 15/14

Electroweak Baryogenesis

Application of Kinematic Fits

> tool to improve jet energy and invariant mass resolution

> precise initial states at ILC are ideal for application of kinematic fits

> number of 4-vectors, representing final state particles, is fitted under constraints

E, p conservation invariant mass: M_{ij} = X GeV, M_{ij} = $M_{lk},$ M_{ij} = (X \pm Y) GeV

₩

variation of measured quantities under certain constraints

variable χ² is minimised under condition that imposed constraints are fulfilled
 χ² quantifies deviation between measured and fitted parameters

$$\chi^{2} = (\eta - a)^{T} C^{-1} (\eta - a)$$

- a = vector of measured quantity
- $\eta =$ vector of varied quantity
- C = covariance matrix

Application of Kinematic Fits in Analysis

useful in current analysis strategy

mass distributions as input parameters for neural net training

 \longrightarrow especially: ZHH vs. ZZH/ZZZ

- IIHH: neural net training
- vvHH: cut on mh1, mh2, mhh neural net training

qqHH: cut on mh1, mh2, mz neural net training

test different fit hypothesis

constraint	ШНН	vvHH	qqHH
$\sum E = 500 \text{ GeV}$	V	×	~
$\sum p = 0$	~	×	~
M ^{II/ij}	~	~	~
M ^{ij}	~	~	~
$M^{ij}=M_{lk}$	~	~	~

Application of Kinematic Fits in Analysis

 χ^2 could be useful variable for better signal and background separation! How does correlation between $\chi^2_{\rm ZHH}$ and $\chi^2_{\rm ZZH}$ look like?

Application of Kinematic Fits in Analysis

Kinematic Fitting: ZHH (IIHH channel)

best result when adding χ^2 distributions to analysis!

n	o overlay results	(after a	cross section: $\frac{\Delta \sigma_{ZHH}}{\sigma_{ZHH}} = 32.6\%$			
	decay channel	signal	background	sig	gnificance	2001
				excess	measurement	
	$ZHH \rightarrow l^{-}l^{+}HH$	3.0	4.3	1.16σ	0.91σ	Higgs self coupling: $\Delta \lambda = 53.5\%$
		3.3	6.0	1.12σ 0.91σ		Higgs self-coupling. $\frac{1}{\lambda} = 55.5\%$
		3.0	3.2	1.32σ	0.99σ	
		4.4	6.8	1.43σ	1.18σ	$\Delta \sigma_{7}$ HH 21.40/
	$ZHH \rightarrow \nu \bar{\nu} HH$	5.2	6.9	1.63σ	1.37σ	cross section: $\frac{2.111}{\sigma_{\text{ZHH}}} = 31.4\%$
	$ZHH \rightarrow q\bar{q}HH$	9.2	20.9	1.82σ	1.64σ	
		7.7	23.5	1.45σ	1.31σ	
						Higgs self-coupling: $\frac{\Delta\lambda}{\lambda} = 51.5\%$

 $\begin{array}{ccc} & \rightarrow l^{-}l^{+}\mathrm{HH} & \rightarrow \nu\nu\mathrm{HH} & \rightarrow qq\mathrm{HH} \\ \mathrm{Z} \rightarrow l\bar{l}, \ \mathrm{HH} \rightarrow \mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}} & \mathrm{Z} \rightarrow \nu\bar{\nu}, \ \mathrm{HH} \rightarrow \mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}} & \mathrm{Z} \rightarrow q\bar{q}, \ \mathrm{HH} \rightarrow \mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}} \\ (10\% \times 60\% \times 60\% \approx 3.6\%) & (20\% \times 60\% \approx 7.2\%) & (70\% \times 60\% \times 60\% \approx 25\%) \end{array}$

Excess and measurement significance

excess significance: assuming there is no signal, the probability of observing events equal or more than the expected number of events $(N_S + N_B)$

$$p = \int_{N_S + N_B}^{\infty} f(x; N_B) dx$$

in case of large statistics: $\frac{N_S}{\sqrt{N_B}}$

measurement significance: assuming signal exists, the probability of observing events equal or less than the expected number of background events (N_B)

$$p=\int\limits_{-\infty}^{N_B}f(x;N_S+N_B)dx$$
 n case of large statistics: $\frac{N_S}{\sqrt{N_S+N_B}}$

convert to gaussion significance (s):

i

$$1 - p = \int_{-\infty}^{s\sigma} N(x; 0, 1) dx$$

Durham clustering algorithm

- Durham algorithm clusters the 2 objects i and j with the smallest mutual angle θ_{ij} and energy min(E²_i, E²_j).
- > algorithm work iterative: beginning with a list of jets that are all just particles
- > between every particle pair (i,j) the relative distance y_{ij} is determined from
 - the energies E_i, E_j of the particles
 - and their mutual angle θ_{ij}

by:

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{E_{vis}^2}$$

two particles with smallest relative distance value y_{ij} are combined to a new object with four-momentum:

In figure object 3 and 4 are clustered to a new object 3^* .

Kinematic fit Jet/Quark assignment

MarlinKinFit package

E, p conservation invariant mass constraints

-
$$M_{ij} = X \text{ GeV}$$

- $M_{ij} = M_{lk}$
- $M_{ij} = (X \pm Y) \text{ GeV}$

ongoing: implementation in Higgs self-coupling analysis

need: jet-quark comparison,

association via angle differences

best permutation with smallest sum of angles $\sum \alpha_i \text{ btw quark \& jet}$ $\alpha_i = \frac{\vec{p}_{j1} \cdot \vec{p}_{q1}}{|\vec{p}_{j1}| \cdot |\vec{p}_{q1}|}$

100

Reconstructed mass [GeV]

150

50

Prospects for other beam polarisations

 \blacktriangleright standard polarisation used in analysis P(e^-,e^+)=(-0.8,~0.3) with $\mathcal{L}=2~ab^{-1}$

rough estimation of Higgs self-coupling accuracy for other polarisations

Polarisation	no ov	verlay	overlay		
$P(e^-, e^+)$	cross section	self-coupling	cross section	self-coupling	
(-0.8, 0.0)	36.7%	60.1%	40.7%	66.7%	
(0.8, 0.0)	37.2%	61.1%	41.7%	68.4%	
combined	26.2%	42.9%	29.1%	47.8%	
(-0.8, 0.3)	32.6%	53.5%	35.5%	58.1%	
(0.8, -0.3)	33.5%	54.9%	37.1%	60.8%	
combined	23.4%	38.3%	25.6%	42.0%	
(-0.8, 0.6)	29.9%	49.2%	33.6%	55.1%	
(0.8, -0.6)	30.6%	50.2%	33.8%	55.4%	
combined	21.4%	35.1%	23.8%	39.1%	

combined: $P(+) \cdot 2 \ ab^{-1} + P(-) \cdot 2 \ ab^{-1}$

▶ for P(e⁻)= -0.8: increase P(e⁺) \rightarrow 10% improvement decrease P(e⁺) \rightarrow 10% worsening

similar results for opposite polarisations

Trilinear Higgs self-coupling

Higgs potential after spontaneous symmetry breaking for a physical Higgs field:

$$V(\eta_{H}) = \frac{1}{2}m_{H}^{2}\eta_{H}^{2} + \frac{\lambda v \eta_{H}^{3}}{4} + \frac{1}{4}\lambda \eta_{H}^{4}$$

 η_H : physical Higgs field v: vacuum expectation value

http://www.quantumdiaries.org

- \blacktriangleright verify the shape of Higgs potential \longrightarrow measure three terms
- \blacktriangleright to measure λ one must observe double Higgs production at lepton or hadron colliders

Matrixelementmethod (MEM)

- irreducible diagrams significantly degrade self-coupling sensitivity
- > long term goal: optimise analysis strategy for Higgs self-coupling diagram
- implement MEM in analysis —> weighting of reconstructed particles as if they come from a certain process
- first: use different MEs for better signal/background separation (ZHH, ZZZ, etc.)

Matrixelement as from ZHH

future: optimise selection for self-coupling diagram in ZHH: ME irreducible diagrams, ME self-coupling diagram

