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● Brief introduction to the scenario

● Conclusions drawn from fast simulation 

● Going to full sim 
● Low momentum particle identification

– Electron – pion separation

– Muon – pion separation

● Tracking in the presence of beam bkg
– Efficiency - “bad” track rate considerations

– Effect on preselection cuts

– PFOs reconstruction

OutlineOutline
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Naturalness → μ at electroweak scale

● Mass degenerate lightest states χ1
∓, χ1,2

0  mostly higgsino like

●  No other SUSY particles with masses < 1 TeV

Very challenging for both LHC & ILC

● Detector signature is few very soft particles and missing energy

● 2 benchmark scenarios

Light higgsinos scenarioLight higgsinos scenario

Mh=124 GeV
δm(chargino – neutralino) 1.59GeV

Mh=127 GeV
δm(chargino – neutralino) 0.77GeV
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Precision on higgsinos mass measurement, mass differences & cross section

• Sensitivity in μ is  ~ %

• Constraints on M1, M2 on the multi-TeV range

Fast simulation results – brief summaryFast simulation results – brief summary

Results*

√s 500 GeV, 500 fb-1 for each P(e+,e-) = (+-30, -+80)

Fast simulation in SGV (M. Berggren, phys-ins-det 1203-0217)
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● Fast simulation 'cheats' in:

● Tracking

– DBD tracking efficiency is considered in SGV but  'bad'* tracks 
are not taken into account

●  Particle identification considered to be perfect
– e, π, μ current identification algorithms not tuned for low momenta

From fast to full simulationFrom fast to full simulation
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* 'bad' tracks: ghosts or real tracks of beam bkg particles 



1) e, μ, π identification in low P range (0.1 – 2 GeV)

– e – π separation using dE/dX (Masakazu)

– Separation of low momentum μ and π using calorimetry (Hale)

2) Low momentum tracking – effect of beam bkg 

– High track finding efficiency in (0.1 – 2 GeV) range

– Deal with 'bad' tracks in VXD - FTD
● Ghosts
● Pair bkg tracks
● γγ -> hadrons tracks

3) Hermeticity

– Distinguish from physics background (eγ, γγ)
● ISR γ reconstruction, Beamcal veto

Experimental challenges Experimental challenges 
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e – π separatione – π separation
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Studies performed by Masakazu Kurata shown that dE/dx can be used for     
electron – pion separation

-  Fake e reconstruction rate need to be study
-  π - e seem to be well separated in low P range

See Masakazu talk of 21/04



Muons and pions create clusters in calorimeters with different shapes

Exploit that information for particle identification

μ – π separationμ – π separation
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Generation of single μ & π of various momenta (0.2 – 2 GeV) in front 
of the ECAL using particle gun

Check if
• Create calo hits
• Pandora reconstruct a PFO

Use calo hits instead of Pandora clusters

Low P PFO reconstructionLow P PFO reconstruction
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➔ Reconstruct PFOs directly using hits in a cone around track impact point



● Choose proper discriminating variables
– Cluster E / track P (MC info)
– Depth of cluster vs incident angle (D

cluster
x cosα)

– Mean radius of hits (pivot: cluster position)
– RMS of hits radius  

● Apply TMVA
– Use of Boost Decision Trees

– Optimal perfomance on terms of bkg rejection vs signal efficiency
– BDTs input

–

–

Low P PFO identificationLow P PFO identification
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BDTs output

Fix muon identification @ 75%
Pion identification ~ 95%
Pions identified as muons ~ 5%

Identification efficiency using BDTsIdentification efficiency using BDTs
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tracking



● Very soft particles in final state
– Performance of Silicon tracking is critical

● Reconstruct higgsino study using following options for Silicon tracking
➢ Std DBD tracking

➢ FPCCD tracking

➢ Mini – vector tracking

● VXD models considered (up to now)
➢ CMOS fast VXD

➢ VXD with time resolution of 1BX at each layer

➢ VXD with time resolution of 10BXs at each layer

● Only pairs up to now, next step to add γγ->hadrons

● Scope of the study
– Find out which more suitable tracking to proceed to higgsino full simulation study

➢ Figure out the constraints set by the VXD sensors specifications

Higgsino tracking performance vs pattern recognition & VXD Higgsino tracking performance vs pattern recognition & VXD 
parametrisationparametrisation
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PT (GeV)

Higgsino @ CMOS VXDHiggsino @ CMOS VXD

How to interpret this tracking performance in the framework 
of higgsinos study? 14



Next step: apply same pre-selection as in fast 
sim*

● Fast sim: ~ 60% evts survive

STD & FPCCD tracking
● ~40% evts survive, up to CMOS VXD 

occupancy levels

* [hep-ph] 1307.3566

Pre-selectionPre-selection

Cell. Automaton creates too many low P
T
 PFOs

Suspected they are partially pair bkg particles
● Most of events are filtered out in preselection
● Partially restored with  criterio for P

T
 > 350 MeV when running the automaton
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● Disentangle the tracking from particle ID
– Assume for now a perfect particle ID

● Evaluate the effect of different levels of pair bkg on PFOs 
reconstruction efficiency 

Efficiency – 'bad' rate trade offEfficiency – 'bad' rate trade off
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P
T
 (GeV)

P
T
 (GeV)

Given a VXD occupancy, the lower the 
required P

T
 – the higher the bad track rate

● Identify the requirement on minimum P
T

● Is the study feasible with the subsequent 
bad track rate

➔ Hint on allowed VXD (FTD) occupancy 



● Particle ID

● Significant progress in μ, π identification – separation at low momenta 

– 95% π ID, 75% μ ID, while π misidentification as μ stays at ~5% for single 
track study

● dE/dx shows promising results for e – π separation

● Tracking

● Silicon tracking has been significantly improved since DBD (FPCCD, CA) 

● We can seed tracks in VXD, given that it has some relatively fast layers

– high efficiency down to ~100 MeV

– We are swarmed by 'bad' tracks

– Ghosts & γγ->hadrons can be addressed in the framework of the reco. tools

– Pair bkg tracks: faster detector(?) 

● We should not forget FTD tracking

Light higgsino scenario is a challenging benchmark for ILD performanceLight higgsino scenario is a challenging benchmark for ILD performance

● Low P
T
 tracking – particle ID, forward region coverage

A lot of work in reconstruction tools needed before conclusions on detector A lot of work in reconstruction tools needed before conclusions on detector 
requirements can be drawnrequirements can be drawn

Conclusion - outlook Conclusion - outlook 
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BACKUP



No BKGNo BKG

Cut Paper STD FPCCD MV

events 38130 1000 1000 1000

BCAL activity 38054 996 996 996

PFOs<15 38054 996 996 996

1 hard γ 29675 677 679 681

|cosθ
soft

|<0.9397 23117 390 379 413

E
soft

22156 390 379 413

Missing E > 300GeV 22156 390 379 413

|cosθ
miss

|<0.992 21558 382 372 403

1BX1BX

Cut Paper STD FPCCD MV

events 38130 1000 940 1000

BCAL activity 38054 996 937 996

PFOs<15 38054 996 937 996

1 hard γ 29675 677 635 677

|cosθ
soft

|<0.9397 23117 447 397 409

E
soft

22156 447 397 409

Missing E > 300GeV 22156 447 397 409

|cosθ
miss

|<0.992 21558 436 388 398
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10BX10BX

Cut Paper STD FPCCD MV

events 38130 940 940 940

BCAL activity 38054 937 937 937

PFOs<15 38054 937 937 42

1 hard γ 29675 629 629 27

|cosθ
soft

|<0.9397 23117 416 403 8

E
soft

22156 416 403 8

Missing E > 300GeV 22156 416 403 8

|cosθ
miss

|<0.992 21558 406 393 8

10BX10BX

Cut Paper STD FPCCD MV, PT > 250MeV

events 38130 940 940 940

BCAL activity 38054 937 937 937

PFOs<15 38054 937 937 863

1 hard γ 29675 629 629 583

|cosθ
soft

|<0.9397 23117 416 403 247

E
soft

22156 416 403 247

Missing E > 300GeV 22156 416 403 247

|cosθ
miss

|<0.992 21558 406 393 240
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● Via Z, γ exchange in s - 
channel

● Strong polarisation 
dependence for charginos, 
weaker for neutralinos

● t – channel suppressed for 
both

,Z

2 benchmark points, 
dM1600 & dM770

ProductionProduction
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Decay & SM bkgDecay & SM bkg

Chargino & neutralinos decay modes
Result to few soft particles & missing energy 

➢ P
T
 spectrum at generator level

Main SM bkg processes
➢ e+e- → τ+τ-

➢ e+e- → τ+τ- νν
➢ e+e- → γ* γ* → ff    
➢ Requirement for a hard ISR 

photon (E
ISR

>10 GeV) suppresses bkg
➢ eγ→ 3f dominant remaining bgk

Seperation of chargino – neutralino processes
➢  Chargino: require semi-leptonic decay
➢ Neutralino : require photon
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Fast sim tracking efficiencyFast sim tracking efficiency

Plots from DBD – ttbar sample, pair bkg included
 ~ 99.7% eff, P≥ 1 GeV, ≥ 99.8%, cos(θ) < 0.95
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DBD VXD Fast CMOS VXDFast CMOS VXD
layer σ

spatial 
(μm) σ

time
(μs) σ

spatial
(μm) σ

time
(μs)

L1 3 / 6 50 / 10 3 / 6 50 / 2

L2 4 100 4 / 10 100 / 7

L3 4 100 4 / 10 100 / 7

CMOS VXD specificationsCMOS VXD specifications
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√s 500 GeV, 500 fb-1 for each P(e+,e-) = (+-30, -+80)
Fast simulation in SGV*

Fast simulation results – brief summaryFast simulation results – brief summary

Feasibility of separation of higgsinos in reconstruction in the fast sim framework shown

• Chargino mass measurement
– DM1600: MREC = 166.2+2.0 GeV    (MTRUE = 165.8 GeV)

– DM770:   MREC = 167.3+1.5 GeV    (MTRUE = 167.4 GeV)

• Chargino – LSP mass difference
– DM1600: ΔMREC = 1630 + 270 MeV    
– DM770:   ΔMREC = 810 + 40 MeV    

• Polarised chargino cross – sections precision
– For P(e+,e-) = (+-30, -+80), δσ/σ = 1.9% (1.6%) for dM1600 (dM770)

• Neutralino mass measurement
– DM1600: MREC = 169.6+3.3 GeV    (MTRUE = 166.9 GeV)
– DM770:   MREC = 165.7+1.6 GeV    (MTRUE = 167.6 GeV)

• Polarised chargino cross – sections precision
– For P(e+,e-) = (+-30, -+80), δσ/σ = 3.2% (1.7%) for dM1600 (dM770)

Results

* See Mikael Berggren, physics.ins-det 1203-0217
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See [hep-ph] 1307.3566

Parameter Determination Parameter Determination 

4 parameters defining chargino – neutralino sector @ tree 
level

● M
1
, M

2
, μ, tanβ

Measurements used for extraction
● Neutralino – chargino masses, mass difference, δσ/σ
● tanβ can't be constraint – fixed to values in range 1 – 60 

For M
1
, M

2
 obtain lower limits – allowed region

● M
1
, M

2 
strongly correlated

● μ determination precision
● ~ 2.5 GeV (dM770), ~ 6.8 GeV (dM1600)

Expected improvement from high luminosity run
● Narrows the allowed region for μ by 2-3.5 GeV
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γγ -> hadronsγγ -> hadrons
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Understanding and proper simulation of γγ->hadrons

2 strategies under consideration to filter them out

● Identification via their production vertex

● Identification via their invariant mass
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