

Tau Reconstruction and Detector Optimization

Taikan Suehara (Kyushu University, Japan) On behalf of M. Berggren, D. Jeans, S. Kawada, T. H. Tran

Characteristics of tau in LC

Tau in LC

- Usually highly boosted

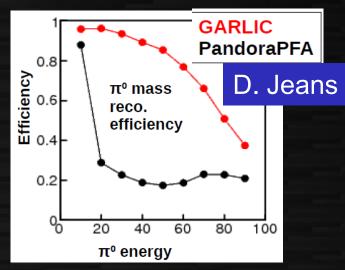
- Except low-energy τs for BSM study
- Very confined bunch of particles
 - Separation of decay modes is challenge
 - $e/\mu/\pi$ separation is also critical
 - Extracting kinematics on 'tau-rest frame' – precise direction measurement is needed
- Various decay
 - Intensive efforts needed for analysis

Final state	Branching fraction
$e^-\bar{\nu}_e\nu_{\tau}$	$17.85 \pm 0.05\%$
$\mu^- \bar{\nu}_\mu \nu_\tau$	$17.36 \pm 0.05\%$
$\pi^- \nu_{\tau}$	$10.91 \pm 0.07\%$
$\rho^- \nu_\tau \ (\rho^- \to \pi^- \pi^0)$	$25.52 \pm 0.10\%$
$a_1^- \nu_\tau \ (a_1^- \to \pi^- \pi^0 \pi^0)$	$9.27 \pm 0.12\%$
$a_1^- \nu_\tau \ (a_1^- \to \pi^- \pi^+ \pi^-)$	$8.99 \pm 0.06\%$
24 other modes	10.10%

age 2

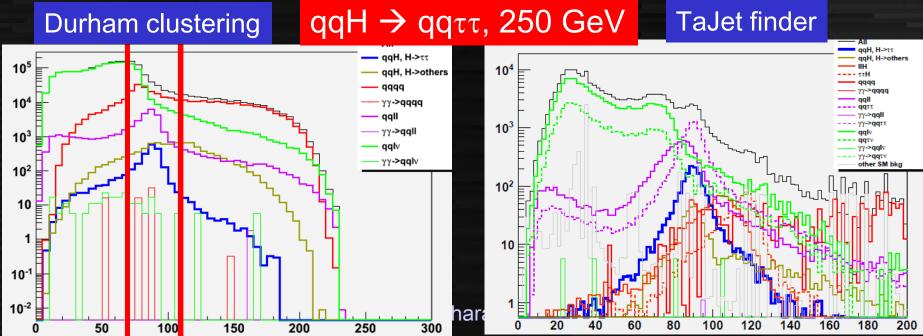
Taikan Suel

Tau: physics target for ILD


- Higgs $\rightarrow \tau \tau$
 - Branching ratio
 - CP violation (by impact param and angular info)
 - Many decay modes should be studied: lot of effort
- Precise measurement of ff production
 Including tau polarization measurement
- BSM stau? (low energy)
- Treatment of tau as background
 'Tau tagger' is essential
- etc.

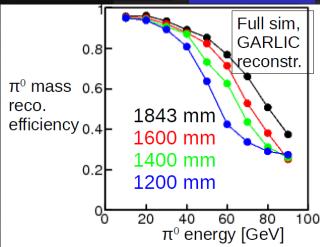
Reconstruction tools (1)

PFA of tau is different from that of jets


- High-energy low-multiplicity (but concentrated) particles
- Photon counting ($\rightarrow \pi^0$) is as important as energy resolution
- Garlic is better than Pandora

→ how to combine if we also need to reconstruct jets? (eg. $qqH \rightarrow qq\tau\tau$)

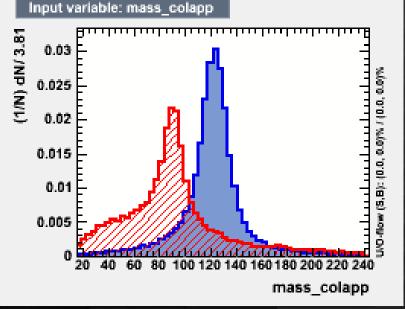
Reconstruction tools (2)


- Tau finder key algorithm to separate tau
 - Normal jet clustering is usually not good
- Dedicated Tau finders
 - TaJet finder (tuned for $qqH \rightarrow qq\tau\tau$)
 - DELPHI tau finder (for low energy tau)
 - Others?

Tau and Detector Optimization

Radius

- Particle separation
- Isolation of tau from jets (also B field affects)
- Pixel size
 - Particle separation
 - Ultra-high granular pixels at first layers of ECAL may help (eg. MAPS)
- Photon energy resolution
 - meson $(\pi^0/\rho/a_1)$ reconstruction
- Impact parameter resolution
 For angular analysis of CP violation



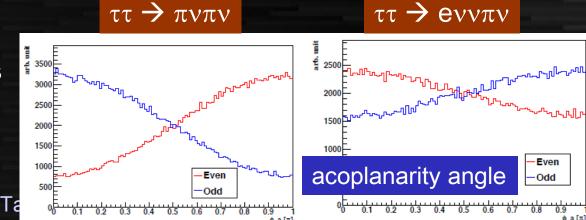
D. Jeans

Analysis: $H \rightarrow \tau \tau$ S. Kawada

Analysis condition

- PandoraPFA (no Garlic)
- DBD geometry
- TaJet finder
- Collinear approx.
 (only on qqH, IIH)
- No reconstruction of tau decay products

Μττ @ qqH 250 GeV

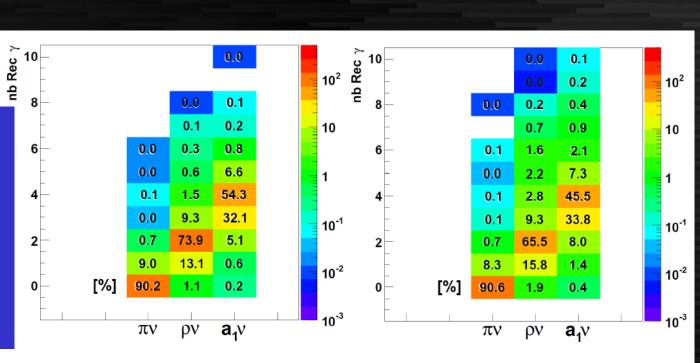

$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$	qqh	e ⁺ e ⁻ h	$\mu^+\mu^-h$	vvh	Combined
250 GeV, 250 fb ⁻¹	3.4%	14.4%	11.3%	32.4%	3.2%
500 GeV, 500 fb ⁻¹	4.6%	25.2%	17.8%	6.9%	3.7%

CMS 3 ab⁻¹: 2-5%

Analysis: Higgs CP

Identifying CP-even and CP-odd mixing of Higgs

- CP odd (H \rightarrow) ZZ couples only with loop
 - More difficult to see the non-SM Higgs mixing
- (H \rightarrow) $\tau\tau$ is directly coupled to CP-odd Higgs
- Complicated analysis to identify CP mixing
 - Clear separation of Higgs decay mode
 - Angular parameters differ by decay modes
 - Kinematics of tau-rest frame critical
 - cannot perfectly reconstruct kinematics of taus using impact parameters with momentum of decay products_{Ta}

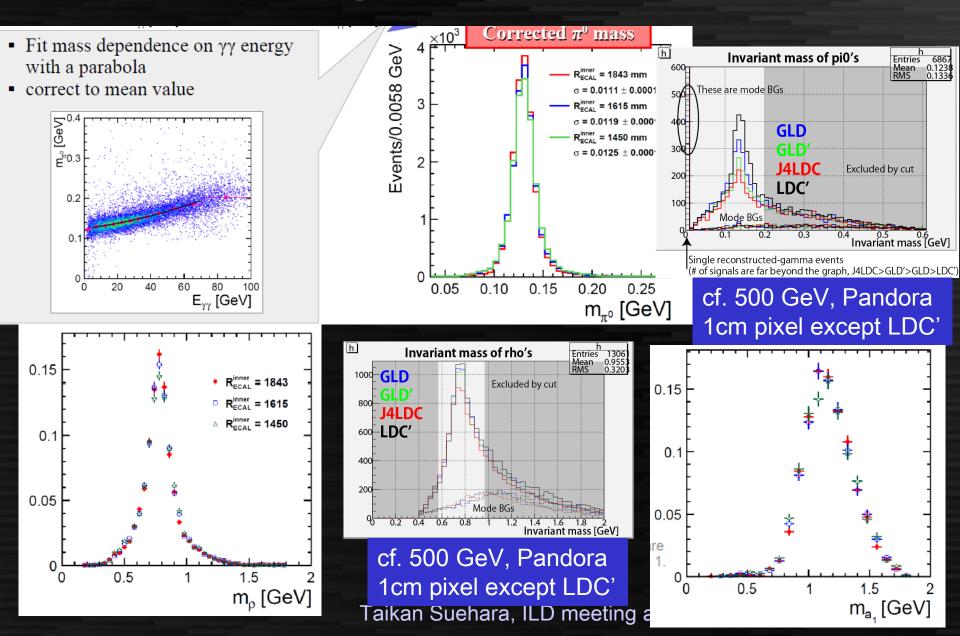

Analysis: $e^+e^- \rightarrow \tau \tau$ H. Tran

Analysis condition

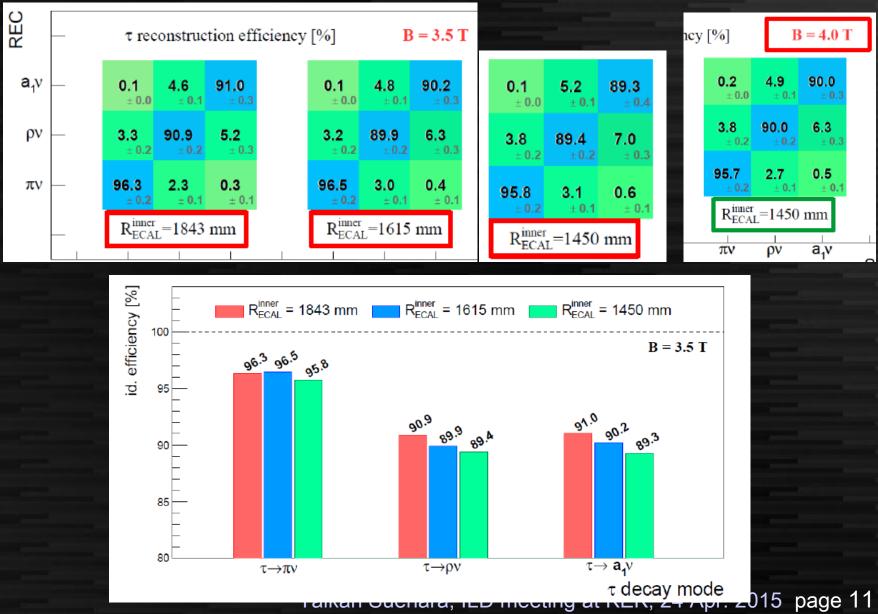
- 250 GeV CM energy
- Garlic v3.0.2 (no jets)
- Compare performance of various radius with constant aspect ratio

• SiECAL

number of reconstructed photons with MVA photon selection


R_{ECAL}^(inner) = 1843 mm

R_{ECAL}^(inner) = 1450 mm


Target: separation of 1-prong hardonic decay

$\pi^- \nu_{\tau}$	$10.91 \pm 0.07\%$
$\rho^- \nu_\tau \ (\rho^- \to \pi^- \pi^0)$	$25.52 \pm 0.10\%$
$a_1^- \nu_\tau \ (a_1^- \to \pi^- \pi^0 \pi^0)$	$9.27\pm0.12\%$

Analysis: $e^+e^- \rightarrow \tau \tau$ H. Tran

Analysis: $e^+e^- \rightarrow \tau\tau$ H. Tran

Final comments

- Detector challenge
 - Decay reconstruction for
 - Higgs CP (seems most important)
 - ff polarization niche market physics??
 - others?
 - Low energy stau
 - Low energy track/photon reconstruction
- Other perspectives for calorimeter optimization than quark jets
- Analysis and software is critical
 - Optimization is not easy same as quark jets