# **Tunnel Length Issue**

K.Yokoya 2014-1211 ADI

ADI/CFS Informal mtg at KEK on Dec.4

#### Physics Issue

- TDR Design : Maximum energy E<sub>CM</sub>=500GeV ✓ Decided before the discovery of Higgs at ~125GeV
- 500GeV is close to the threshold of e+ e-  $\rightarrow$  t t H at E<sub>CM</sub>=475GeV
- E<sub>CM</sub>~550GeV is preferable for measuring top-Yukawa coupling
  - The crosssection at 550GeV is factor ~4 larger than at 500GeV



#### Accelerator Issue

- The average operation gradient defined as G=31.5MV/m in TDR
- → linac length ~11km\*2 for 500GeV
- Can we guarantee 31.5MV/m?
  - Vertical test for XFEL so far shows values somewhat lower than ILC spec 35MV/m
  - Moreover, gradient reduction in cryomodule
    - Average reduction of first 11 module = ~14% (but only 10 of full production)
- If the actual gradient is lower, e.g., by 5%, ttH will be completely missed

XFEL cavity production tests and comparison before/after module assembly

#### European Module Test Results II



- Average Operational gradients of modules with individual rf distribution
- All modules can be operated above 23.6 MV/m !!



CRISP 🕚

INFN

HELMHOLTZ

TTC Meeting KEK, Dec 2-5, 2014 **Preliminary data; results are not published** 名字

# Timing Issue



- TDR values give

   (L<sub>1</sub> + L<sub>2</sub> + L<sub>3</sub>) L<sub>4</sub> = 9 x C<sub>DR</sub> + 294m
- It is possible to adjust the value either by
  - Shortening the BDS by ~150m

or by

- Expanding the DR circumference by ~30m
- This will nearly keep the TDR layout
- But no margin for 500GeV, no way to reach 550GeV

# What if longer linac is needed?

- Perhaps, ~10% (sum of physics and accelerator demands) is a reasonable extension
- 10% fully equipped linac is probably out of concern – Too expensive O(500M\$)
- But at least we can prepare additional empty tunnel
- With TDR C<sub>DR</sub>, ( $L_1 + L_2 + L_3$ )  $L_4 = 10 \times C_{DR}$ tells the positron tunnel must be lengthened by  $\Delta L_{Linac} = C_{DR}/2 - 294m/2 = 1473m = 14\%$  of TDR linac tunnel
- This is enough for the timing issue, but the electron tunnel should also be lengthened for  $E_{CM}$  issue
  - ✓ Nearly 3km increase in total

#### Another Solution

- Keep n=9 and adopt longer C<sub>DR</sub>
- $\Delta L_{e+Linac}$ =  $9x\Delta C_{DR}/2 - 294m/2$
- For example,  $C_{DR} =$ 3508m gives  $\Delta L_{e+Linac} = 1064m =$ ~10% ( $\Delta L_{total}$  ~ 2.1km)
- This requires 8.3% larger DR
  - ✓ Slight modification of wiggler length and RF is needed

| n  | h    | Circumferenc<br>e (m) | п  | N*circumference<br>(m) | Mismatch (m) |
|----|------|-----------------------|----|------------------------|--------------|
|    | 7022 | 3238.7                | 9  | 29148.1                | -293.6       |
|    | 7906 | 3646.4                | 8  | 29171.2                | -270.6       |
|    | 8005 | 3692.1                | 8  | 29536.5                | 94.7         |
|    | 7126 | 3286.6                | 9  | 29579.8                | 138.1        |
|    | 8102 | 3736.8                | 8  | 29894.4                | 452.6        |
|    | 8108 | 3739.6                | 8  | 29916.5                | 474.8        |
|    | 8126 | 3747.9                | 8  | 29982.9                | 541.2        |
|    | 7240 | 3339.2                | 9  | 30053.0                | 611.3        |
|    | 8148 | 3758.0                | 8  | 30064.1                | 622.3        |
|    | 8172 | 3769.1                | 8  | 30152.7                | 710.9        |
|    | 8182 | 3773.7                | 8  | 30189.6                | 747.8        |
|    | 8191 | 3777.8                | 8  | 30222.8                | 781.0        |
|    | 8237 | 3799.1                | 8  | 30392.5                | 950.7        |
|    | 7372 | 3400.1                | 9  | 30601.0                | 1159.2       |
|    | 7382 | 3404.7                | 9  | 30642.5                | 1200.7       |
|    | 8308 | 3831.8                | 8  | 30654.5                | 1212.7       |
|    | 8378 | 3864.1                | 8  | 30912.8                | 1471.0       |
|    | 7498 | 3458.2                | 9  | 31124.0                | 1682.2       |
| is | 7606 | 3508.0                | 9  | 31572.3                | 2130.5       |
|    | 7736 | 3568.0                | 9  | 32111.9                | 2670.2       |
|    | 7022 | 3238.7                | 10 | 32386.8                | 2945.0       |

## How to proceed?

- Consensus to increase tunnel length
- Some more detail of the design
  - ➤ Modification of DR if needed
  - > Where to insert the empty section?
  - Cryogenics system
  - ➢CFS issues : study started
  - Cost estimation
    - ✓ Empty tunnel ~25M\$/km
    - ✓ Beam line (high energy beam, RTML)
    - $\checkmark \Delta \text{cost of DR}$
- Time line
  - ✓ Change request early next year
  - ✓ Final decision by ALCW at KEK in Apr.2015

## Which is better?

A)  $\Delta L_{total} = 3 \text{km}$ 

- gives larger gradient margin (14%)
- B)  $\Delta L_{total} = 2.1 \text{km}$  with  $\Delta C_{DR} = 269 \text{m}$  (8.3%)
  - Requires less increase of tunnel length
  - But 8.3% increase of C<sub>DR</sub> (plus 8% wiggler length and RF power/voltage) may even be more expensive than 1km of linac tunnel
  - Redesign of DR needed  $\rightarrow$  manpower ?

Where should the extra linac tunnel be inserted?

- High energy ends of linacs
  - ✓ Cryogenics station at PM+-8 can be reinforced later
  - ✓Additional access tunnel not needed



#### SCRF Experts Discussion at KEK after TTC (Dec.5)

- Improvement of gradient reduction in cryomodule might be improved
  - One of the important topics of TTC
- Should wait 1-2 more years for the final decision