

Status of post-IP diamond sensor project for beam core and halo measurements

<u>S. Liu</u>, P. Bambade, F. Bogard, P. Cornebise, V. Kubytskyi, C. Sylvia, A. Faus-Golfe, N. Fuster-Martínez, T. Tauchi, N. Terunuma

ATF2 Project Meeting, 24 Feb. 2015

Motivations

 \succ Beam halo transverse distribution unknown \rightarrow investigate halo model

Probe Compton recoil electron (prepare future investigations of higher order contribution to Compton process)

Diamond Sensor with large dynamic range

Expected signal @ATF2 : 10 ->10⁸ e⁻ required!

	Total N	Min. \sim Max. N/mm ² @ DS	Charge signal/mm ²	
Beam	10 ¹⁰	6.2×10 ⁸	1.7µC	
Halo	10 ⁷	$1.1 \times 10^4 \sim 2.2 \times 10^4$	31.2pC~61.4pC	
Compton	28340	30~5.20×10 ²	<mark>82.2fC</mark> ~1.4pC	

4.5mm X 4.5mm X 500μm

Charge generated by 1 MIP for 500 μm diamond (with 100% CCE): 2.88 fC

1 e⁻ tested with ⁹⁰Sr source

$10^5 \rightarrow 10^8 e^-$ tested at PHIL in air

In vacuum DS designed for ATF2

Shan Liu

In vacuum Post-IP DS

- The first Diamond Sensor is installed horizontally at ATF2 in Nov. 2014
- A second unit will be installed vertically in 2015 for vertical halo measurements

Shan Liu

Shan Liu

System Impedance Matching

Status of post-IP diamond sensor project for beam core and halo measurements

Shan Liu

Information from ICT and BPMs

- ICT correction and beam position jitter (4-6 μm) can be taken into account in data analysis
- We read the data from Epics via SSH, but it is possible to use Labca to get data directly from Matlab
- In the future we can also input data from DS to the Epics system

Characterization of Diamond Sensor (DS)

Lower limit of DS : pick-up study

Higher limit of DS : linearity study

Signal Pick-up Study

 Signal pick-up by the strip lines on the PCB was observed as the PCB is not shielded

40 20 Voltage, [mV] -20 CH1 CH2 CH3 CH4 600 800 1600 -200 200 400 1000 1200 1400 1800 time, [ns]

Pick-up scan w/o applying HV on DS

Signal Pick-up Study

Effects:

- Prevent us to see the real waveform (not able to see the small signal of backscattered particles from DUMP)
- Increased the background level (systematic error) for beam halo and Compton signal • measurement

Status of post-IP diamond sensor project for beam core and halo measurements

x 10⁹

Charge Collection Time

• Decreased E in DS due to voltage drop on the 50 Ω -> longer charge collection time needed

Modeling of diamond sensor signal formation in extreme conditions

 > presentation of V. Kubytskyi

Shan Liu

Linearity of DS Response

Linearity of DS Response

Shan Liu

Linearity of DS Response

- Linear response up to 10⁷ is confirmed
- CH1 and CH4 has different behavior in the beam core and away from beam core -> might due to capacitive coupling (under investigation)

Measurements Using DS

Beam core measurement

Beam halo measurement

Waveforms and Integrated Charge during Scan

- The beam core is scanned by DS by applying low voltage
- The charge of waveform at each position is integrated to get the distribution

Shan Liu

Shan Liu

Scope Vertical Range (VR) Setting

Set VR Automatically: Set VR Manually: Change VR at each point Change VR at each range 10^{3} 10³ 2014/12/18 - Day Shift CH1/0.0316:-400V $\sigma = 1.7029$ 10^{2} o --CH1 CH1:-400V CH4/0.0316:-400V 10^{2} x --CH4 $\sigma = 1.6084$ 10 CH4:-400V Gauss fit 10^{1} 10⁰ Charge, [pC] 10^{0} 10-1 10^{-1} 10⁻² 10^{-2} 10 10^{-3} 10 10^{-4} 10-5 -30 -20 -10 0 10 20 30 40 -40 20 40 60 80 100 120 0 Number of Sigmas Motor Position, [mm]

Shan Liu

Cut of Beam Halo

Cut of Beam Halo

BDUMP Strength increasing

Change BDUMP bending magnet strength, the edge of cut doesn't change, it stays at around 95mm-> <u>Cut of beam halo should be given at the BDUMP exit</u>

Shan Liu

Issue with cables

After fixing

Shan Liu

Beam Halo Distribution for Different Optics

- No obvious change observed in the horizontal beam halo distribution between BX10BY1 and BX10BY0.5 optics
- For BX100BY1000 optics, beam halo is less than other optics

Upgrade Aspects for DS

- Temperature probes on the PCB
- Shielding for EM pickup
- Avoid impedance mismatch on the PCB
- Fixing of in vacuum cable to reduce background
- Dealing with coax cable outgasing to enable usage in very strict vacuum conditions
- Simulation of charge collection in diamond, preparing our own diamond sensors at LAL

Conclusions and Prospects

DS with large dynamic range

- Lower limit: 10² of pick up level
- LPF in data analysis
- Shielding of PCB

- Upper limit: linear range up to 10⁷
- Use narrow strips for beam core measurement
- Can be increased by adding smaller resistor (<50 Ohm)</p>
- Signal in non linear range can be calibrated

Beam core and halo measurement

- > Horizontal beam core and halo measurement with **10**⁶ dynamic range achieved
- Beam halo distribution were compared for different beam optics
- > 2nd unit of DS (with upgrades) will be installed vertically in *April 2015*
- Further study to check the possibility of measuring Compton recoil electrons is ongoing

Thank you!

Back up ...

Main Goal for 2014 Run

Commission and characterize DS

November Run (5 shifts)

- Pick-up study
- Study of correlation between DS, ICT and BPM data
- Beam core and halo scan with different HV
- Background study (background signal from cables observed)
- Vertical alignment (VA) applied
- Tests of auto vertical range setting

Initial measurement of horizontal beam halo distribution

December Run (6 shifts)

- Charge Collection Efficiency (CCE) study with attenuators(with different HV)
- Beam halo scan for different beam intensity (1.1*10⁹,2.5*10⁹,4.9*10⁹)
- Beam halo scan for different beam optics
- Study the background from cables
- Study the cut of beam halo by upstream apertures
- First try to measure Compton recoil electrons

Beam Halo Distribution for Different Beam Intensity

Before Normalization

Shan Liu

ATF2 Project Meeting, 24 Feb. 2015 29

QF9AFF horizontal: -3 mm

Change beam horizontal positon at QF9AFF, the edge of cut still stays at around 95mm on HE side

Cut of Beam Halo

QF9AFF horizontal: 0 mm

Shan Liu

Status of post-IP diamond sensor project for beam core and halo measurements ATF2 Project Meeting, 24 Feb. 2015

Beam Size Verification

Vertical beam size is extrapolated from the Post-IP WS measured beam size

	BX10BY0.5 (12-12-14)		
	σ _x (m)	σ _y (m)	
Post-IP WS calculated	1.564e-04	2.892e-04	
Post-IP WS measured	2.174e-04	5.57e-04	
DS calculated	1.394e-03	1.787e-03	
DS expected	1.938e-03	3.442e-03	
DS measured (CH2)	1.498e-03	Non	

Status of post-IP diamond sensor project for beam core and halo measurements

ATF2 Project Meeting, 24 Feb. 2015 32

Beam Core Scan

•

Scan direction

- Signal at each channel is a convolution of beam (Gaussian) with strip (rectangular shape)
- Fit function: F(d1,a1,b1,s1) = d1+a1*(erf(((x+0.75-b1)/(sqrt(2)*s1)))-erf(((x-0.75-b1)/(sqrt(2)*s1))))

Asymmetry in frequency domain observed

2

Background from cables

0.02

CH1 CH₂

Expected signal (400V)

	CH1	CH2	СНЗ	CH4
Measured σ_x	1.70 mm	1.49 mm	1.53 mm	1.61 mm
Ratio of collected e-	13.34%	1.04%	1.02%	14.07%
Expected full charge (3fC/MIP)	1.88µC	147.21nC	143.68nC	1.98µC
Max. charge collected	442.72nC	151.79nC	158.11nC	600.8nC
Corresponding CCE	23.55%	101%	101%	30.35%

Scan_Run60_12-12-2014_143616_core_400V

Data taken with 30dB attenuator Total e- number: 4.8*10⁹

COMPTON RECOIL ELECTRONS STUDY

- Perform simulations in CAIN and Mad-X for different optics
- Compare the estimated signal level with the background/pick-up signal level

Scope Vertical Range Setting

- The sensitivity of DS to beam halo depends on the resolution of scope, which can be adjusted by changing the vertical range (VR);
- We have tried to set the VR manually and automatically by program.