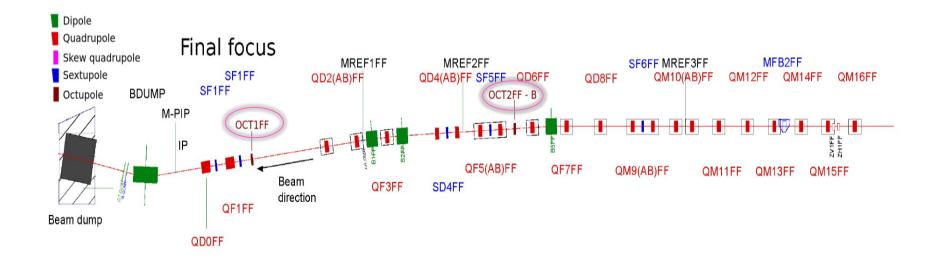
Update on 2 Octupoles procurement for ATF2 Final Focus Systems

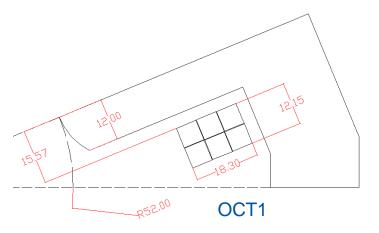
M. Modena - CERN

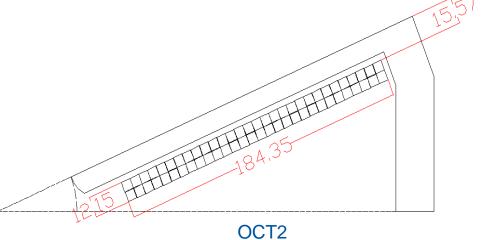

- After the CERN/ATF2 Midterm Collaboration proposal presented in May 2014 and its approval on August 2014, we focus on the final definition of magnet parameters.
- MAGNETIC REQUIREMENTS were finalized:
- In the first discussions (2013) requirement were for two identical octupoles with a nominal gradient of **5284 T/m**³
- The <u>2014 final requirements</u> are:
 - OCT1 with a nominal gradient of 708 T/m³
 - OCT2 with a nominal gradient of 6820 T/m³

(Please refer to Note SLAC-TN-14-019: "Specifications of the octupole magnets required for the ATF2 ultra-low lattice" by E. Marin et al.)

 In a September 2014 Meeting with KEK (remotely), the major integration details (magnet positions, supporting, etc.) for the 2 octupoles were discussed and agreed

(Please refer also at the presentation of M.Patecki: "Ultra-low Beta study" at CLIC Workshop 2015).

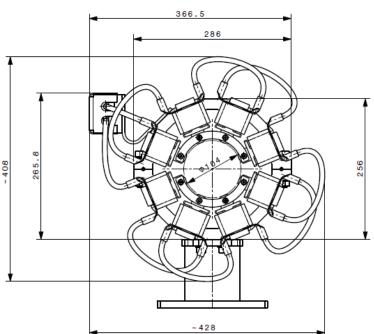


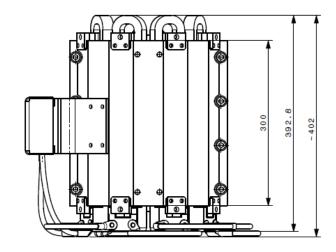

- OCT1 will be place on an micrometric stage for final tuning (stage available at KEK).
- OCT2 will be fix (so needing a very precise alignment). The support will be in responsibility of KEK colleagues.
- Fiducialization and alignment details to be discussed at this meeting

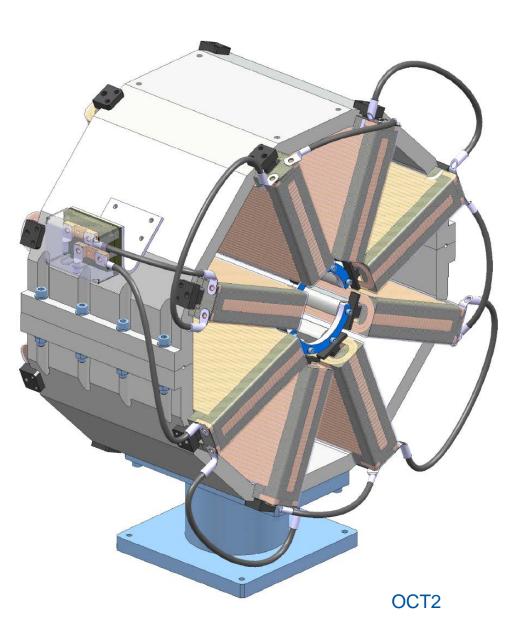
	OCTU1	OCTU2
Integrated gradient [T/m²]	177*120%	1705*120%
Gradient [T/m³]	708	6820
Tunability [%]	-90/+20	90/+20
Magnetic length [mm]	300	300
Aperture radius [mm]	52	52
Ampere-turns [A] (per coil)	180	1800
Number or turns (per coil)	6	60
Current [A]	30	30
Voltage [V]	0.51	5.1
Max Current density [A/mm ²]	0.9	0.9
Max. Power [W]	15.2	152
Min/Max Pole field [Gauss]	13/166	134/1600
Resistance [mOhm]	17	170
Conductor length [m]	35	350
Conductor mass [kg]	11	110
Total magnet mass [kg]	78	320
Max. magnet length [mm]	360	360
Max. outer radius [mm]	135	300

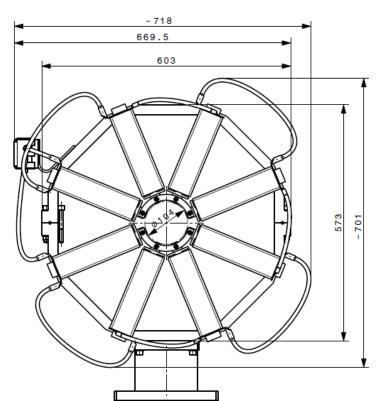
Driving design aspects:

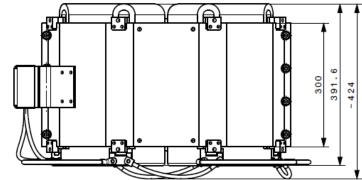
- <u>Easy and "transparent" installation</u> at ATF on existing beam pipe
- <u>No active cooling</u> (→ no vibration)
- Maximize <u>precision</u> (→ field quality)



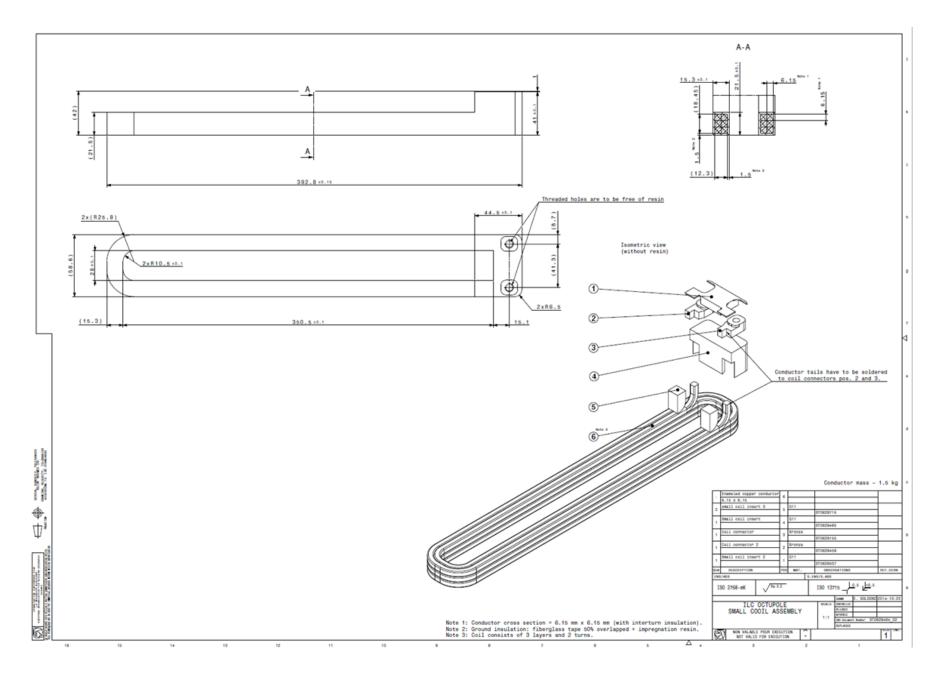


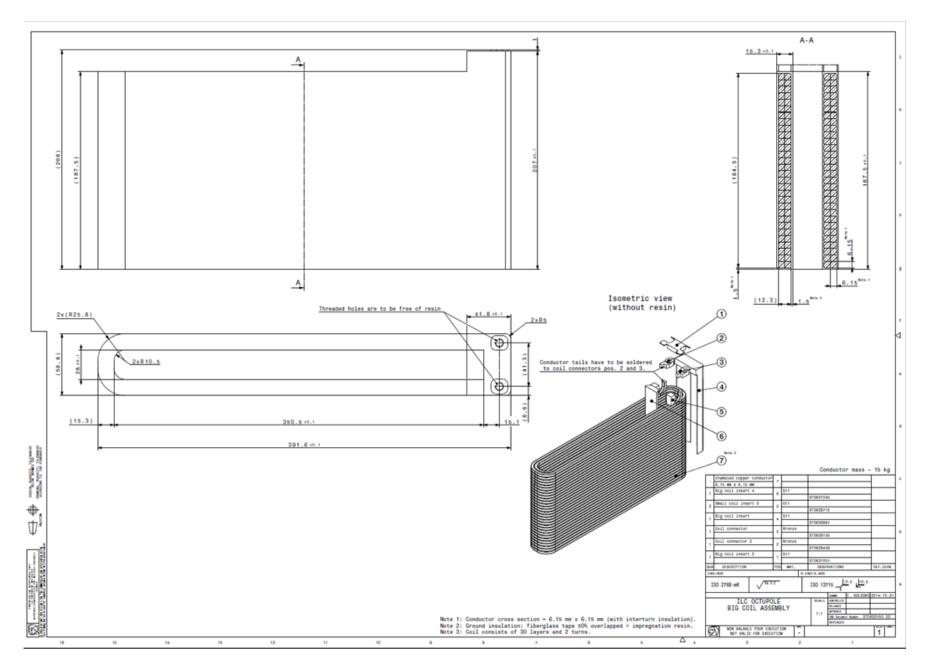






OCT1





Status for COILS procurement:

- After CERN internal discussion, we decided to proceed with an external procurement; it will be faster of what CERN Polymer lab can achieve.
- We will need 8+2 (spares) OCT1 coils and 8+2 (spares) OCT2 coils, so in total 20 coils.
- We agreed with CERN Finance Department a fast procurement procedure and the <u>Company is already selected (SEF- Toulouse, France).</u>
- <u>This week</u> we are visiting SEF to finalize the coils design (filling pieces, connections, etc.).
- We should have the 20 coils at CERN in May 2015 (to be finalized this week).

Status for IRON YOKES procurement:

- Proceeding with the raw material purchasing.
- The 4 half-yokes (2 per magnet) will be produced by EDM technique.
- As soon as last coils design finalized, we will finalize the half-yoke dimensions too.
- We will circulate the half-yokes and final assembly drawings to ATF and CERN Survey colleagues for comments and approval.
 - We expect comments/requirements for the <u>magnet fixations on support</u> (by ATF) We expect comments/requirements for <u>fiducials</u> (by CERN Survey and ATF)

Planning:

- After final design approval, coils and half yoke production will run in parallel.
- To follow: assembly, tests, magnetic measurements and shipment to Japan (for which LAPP should have some experience).
- We target the procurement completion for next Summer, but this has to be better analyse and confirmed as soon as final design approved.

Other procurement:

- The 2 magnets will require very low power supplies (PS), nominally 15 and 150 W.
- We don't know how much PS stability could be a concern (→to be discussed inside ATF community) and may be high stability PS for such small load already exist at KEK.
- We understand that, if needed, CERN could cover the costs of new power supplies.
- In this case CERN expert (D. Aguglia) suggest for ex. Delta Elektronika:
 http://www.delta-elektronika.nl/en/products.html as a well know PS supplier for such type of application.
- Evidently, any other KEK well know supplier could be propose.
- Anyway, it will be more convenient to pass an order from Japan to have PS following Japanese electrical standard and delivery directly on site.

(Even if absent): Thanks for your attention

(Please send me any question/ comment by email: michele.modena@cern.ch)

