

$e^+e^- \rightarrow HA \rightarrow bbbb$ at 1 TeV ILC

Abhinav Dubey **Tohoku University**

- In addition of precision measurements of discovered 126 GeV Higgs boson, ILC also has potential for direct searches of additional states of extended Higgs sector.
- Sensitivity of heavy Higgs pair production is expected to be close to kinematic limit of $1/2\sqrt{s}$.
- The ILC with $\sqrt{s} = 1$ TeV can directly study extra Higgs bosons with masses less than 500 GeV in relatively low tan β regions, which can't be detected easily in LHC.
- Also decoupling limit approaches relatively faster if Higgs masses are greater than 200 GeV, in which case additional Higgs bosons almost degenerates in mass and have similar decay properties.

- Aim is cross-section and mass measurement for the process $e^+e^- \rightarrow HA \rightarrow bbbb$ at $\sqrt{s} = 1$ TeV.
- Integrated luminosity of 1000 fb⁻¹ is assumed.
- Generated sample of HA→bbbb signal using Whizard, Pythia used for decay, with following specifications:

```
same mass for both particles, 400 GeV

tan\beta = 10

x-section: \sqrt{s} = 1 TeV 2.38 fb

prominent decay into bb(bar)

Branching fraction for H \rightarrow bb 77%

A \rightarrow bb 65%
```


• HA production is usually independent of $\tan\beta$ but branching fraction depends on the $\tan\beta$.

4 jet events are selected using mass reconstruction.

- Reconstruction using ChiSquare minimization
 - -- same mass is assumed for both particles

$$\chi^2 = \sum (M_{ij} - M_{kl})^2$$

-- three set of jet pairs possible

- -- set of jet pairs with minimum ChiSquare are selected
- Reconstruction using truth-matching
 - -- associate the reconstructed jets to generated b-quarks from H/A decays using minimum ΔR between the jet and parton.
 - -- in case of duplication, next minimum ΔR is selected.

Jet Selection

Truth match jets : Durham

ChiSquare selected jets : kT

kT algorithm with R=1.1

kT algorithm removes some of beam backgrounds resulting in better resolution.

Chi square selected kT jets used for analysis.

HA→bbbb

Main backgrounds giving same final states are bosons related:

Z hadronic ZZ hadronic WW hadronic **ZZWWMix** hadronic top pair related ttbb : all decay states tth : consists of decay states tth-2l2nbb-hbb, tth-2l2nbb-hnonbb tth-ln4q-hbb, tth-ln4q-hnonbb tth-6q-hbb, tth-ln4q-hnonbb ttz : all decay states. ttbar : ttbar decaying to 6 fermions.

All samples generated using Whizard and Pythia.

Cross-sections at (-0.8, +0.2) polarity

Cross-sections (fb)	eL.pR	eR.pL
Signal	2.27833	0.108
Z had	5062.662	208.134
ZZ had	162.806	4.61696
WW had	1811.6784	0.3517804
ZZWWMix had	1509.4836	1.1612
ttbb	3.184	0.106
tth	3.184	0.106
ttz	3.81691	0.174685
ttbar	436.488	10.0134

HA→bbbb

(mH+mA)/2

After applying b-tagging still lots of top backgrounds left.

To remove rest of the top background we apply cut on Y45 and Y56. Selection Cuts:

Cut 1 : Principal Thrust < 0.9 Cut 2 : Major Thrust > 0.4 Cut 3 : DPhi jet pairs > 1.0 Cut 4 : Sum of b-tag > 3.6 Cut 5 : Y45 < 0.01, Y56 < 0.001

			:lr
•	•	•	

Sample	Signal	Z	ZZ	WW	ZZWW	ttbb	tth	ttz	ttbar	S/
Cuts		hadronic	hadronic	hadronic	hadronic					$\sqrt{S+B}$
Total	2386.33	5270800	167423	1812030	1510644.8	3290.41	3290.38	7745.81	446502	
Cut1	2350.28	750468	29191.3	170671	145347	3105.68	3273.38	7601.05	313995	
Eff %	98.49	14.24	17.44	9.42	9.62	94.38	99.48	98.13	70.32	1.97
Cut 2	1993.37	283567	10311.5	53921.2	45997.6	1260.25	1886.81	3902.77	97774.4	
Eff %	83.53	5.38	6.16	2.97	3.04	38.30	57.34	50.38	21.89	2.81
Cut 3	1547.04	141117	5641.3	29338.1	24717.6	781.53	1233.49	2473.94	57627.3	
Eff %	64.83	2.68	3.37	1.62	1.63	23.75	37.49	31.94	12.68	3.01
Cut 4	695.84	150.93	0	0	0	193.38	215.47	121.96	449.59	
Eff %	29.16					5.88	6.55	1.58	0.10	16.28
Cut 5	553.42	99.99	0	0	0	33.57	28.15	20.63	95.26	
Eff %	23.19					1.02	0.85	0.27	0.02	19.20

Final selection:

After applying these cuts :

Signal events : 553 Background events : 278 $S/\sqrt{S+B} = 19.20$

HA→bbbb

ILD Analysis/Software Meeting

- Presented status of the heavy Higgs search at 1 TeV ILC.
- Clear separation of signal from background is achieved.
- Studying beam backgrounds to get b-jet energy correction but no success yet.
- Will complete mass and cross-section measurements at $\tan\beta$ and also evaluate systematics asap.
- Next plan is to set a limit independent of mass and $tan\beta$.

BACKUP

kT R=1.5 result

Sample	Signal	Z hadronic	ZZ hadronic	WW hadronic	ZZWW hadronic	ttbb	tth	ttz	ttbar	S/
Cuts										$\sqrt{S+B}$
Total	2386.33	5270800	167423	1812030	1510644.8	3290.41	3290.38	7745.81	446502	
All Cuts	487.04	180.73	48.28	0	0	18.77	12.47	10.58	104.44	
Eff %	20.41		0.03			0.57	0.38	0.14	0.02	16.58

(mH+mA)/2

After applying these cuts : Signal events : 487 Background events : 375 $S/\sqrt{S+B} = 16.58$

branching fractions

ILD Analysis/Software Meeting

ic

kT : R value

kT algorithm with R=1.1

kT algorithm with R=1.5

HA→bbbb

Most of the low mass and low $tan\beta$ region has been excluded in various MSSM scenarios.