BR($h \rightarrow \tau^+ \tau^-$) Study Status

Shin-ichi Kawada Hiroshima University

Review: Current Status

- I updated 250 GeV analysis results with using samples which including proper tau polarization and optimized TMVA techniques.
- Now I'm working on updating 500 GeV results with new samples and optimized TMVA, starting with qqh500.

Analysis of 500 GeV $q\bar{q}h$ mode

Signal & Background

Signal Main Background $e^+e^- \rightarrow Zh \rightarrow q\bar{q}\tau^+\tau^- e^+e^- \rightarrow ZZ \rightarrow q\bar{q}\tau^+\tau^-$

Simulation Samples (500 GeV)

- generated signal samples (w/ proper tau pol.)
- available DBD (TDR) samples
 - 2f, 4f, 5f, 6f, aa_4f, higgs_ffh
- aa_2f SGV samples

Event Reconstruction

- Previous procedure: (1) kT-4, (2) tau finder, (3)
 Durham-2
 - But clustering is not perfect. Some of the physics signal objects will be lost by applying kT clustering.
 - How to optimize kT?
- Current procedure now I'm trying: (1) tau finder, (2) kT-2, (3) Durham-2
 - need optimization of tau finder: do not reconstructing overlay objects as a tau jet
 - optimizing kT is easy & clear, using Z mass

Optimization in Tau Finder: Example

Low energy particles are almost overlay objects (and from Z). I decided the threshold for seeds as $E_{PFO} > 2 \text{ GeV}$.

Optimizing kT clustering

Plot of the visible mass after tau selection. (Z mass) = (visible mass after tau selection) for ideal, but contaminated by overlay objects. I checked R = 0.5 - 1.4 (every 0.1), R = 0.9 was optimum.

Cut-based Analysis: Cut Flow

```
Cut 0 (pre-cuts): # of q = 2, # of \tau^{+(-)} = 1
Cut 0.5 (basic cuts):
8 <= # of tracks <= 70, 140 < E_{vis} < 580, 110 < M_{vis} < 575,
P_t > 60, thrust < 0.99, E_{\tau\tau} < 320, M_{\tau\tau} < 300, \cos \theta_{\tau\tau} < 0.65,
50 < E_Z < 395, 10 < M_Z < 375, 30 < E_{col} < 450, 5 < M_{col} < 360
Cut 1: # of tracks <= 67
Cut 2: P_t(all) > 5
Cut 3: thrust < 0.94
Cut 4: |\cos \theta_{\text{thrustaxis}}| < 0.86
Cut 5: |\cos \theta_{\rm miss}| < 0.99
Cut 6: \cos \theta_{\tau\tau} < 0.56
Cut 7: \log_{10} |d_0 \operatorname{sig}(\tau^+)| + \log_{10} |d_0 \operatorname{sig}(\tau^-)| > -0.3
Cut 8: \log_{10}|z_0 \operatorname{sig}(\tau^+)| + \log_{10}|z_0 \operatorname{sig}(\tau^-)| > 0.3
Cut 9: E_Z > 190
Cut 10: 70 < M_Z < 110
                                             cut for collinear approximation:
Cut 11: 110 < M_{col} < 140
                                             most important in this case
```

Cut Table & Results

表 1 500 GeV $q\overline{q}h$ Cut-based 解析の cut table。eX は $\times 10^X$ を表す。

	aab	aah	1000	-04	44	5.5	6F	00.9F	00 /f	eia
	, 4411	, 441	001	21	41	51	01	aa_21	aa_41	sig.
	$h \rightarrow \tau \tau$	$n \not\rightarrow \tau \tau$	ℓℓh							
None	2131	3.260e4	9.397e4	1.320e7	1.598e7	6.895e4	5.888e5	9.829e8	1.041e5	0.0669
pre	1014	691.4	5223	8.181e5	$6.224e_{5}$	6440	2.886e4	1.583e6	9619	0.578
basic	998.9	357.7	2631	5.919e4	1.781e5	3956	2.042e4	2.567e4	2273	1.84
# tracks	998.6	353.8	2628	5.916e4	1.780e5	3947	2.005e4	2.567e4	2270	1.84
$P_t(all)$	991.5	299.4	1972	3.636e4	1.375e5	3059	1.886e4	2.219e4	1695	2.10
thrust	978.8	297.3	1955	2.138e4	7.974e4	2999	1.881e4	1.220e4	1653	2.62
$\theta_{\mathrm{thrustaxis}}$	883.2	273.8	1458	1.082e4	3.628e4	1388	1.476e4	4056	668.4	3.32
$\theta_{\rm miss}$	875.6	259.9	1330	9066	3.273e4	1245	1.444e4	3863	543.0	3.45
$\theta_{\tau\tau}$	872.5	232.9	874.9	8425	3.038e4	1216	1.404e4	3818	521.6	3.55
d_0 sig	849.4	173.8	584.7	5861	2.028e4	726.0	9900	1586	334.0	4.23
$z_0 sig$	784.9	109.1	230.2	3533	9256	165.6	5241	159.7	80.55	5.61
E_Z	697.8	86.72	155.6	2073	4542	36.28	2461	14.83	15.93	6.95
M_Z	610.5	19.13	34.03	176.3	1836	11.20	181.7	5.207	7.968	11.4
$M_{\rm colapp}$	515.2	3.047	4.187	2.634	116.9	1.718	15.21	0	0	20.1

remained N_{sig} = 515.2, N_{bkg} = 143.7 $\frac{S}{\sqrt{S+B}} = 20.1\sigma \leftrightarrow \frac{\Delta(\sigma \times BR)}{(\sigma \times BR)} = 5.0\%$ not so changed than previous (4.9%)

Summary

- Now updating qqh500 results with new samples and new event reconstruction procedure.
- Cut-based analysis was performed, the results were not changed than previous.
- Now working on TMVA... (previous: 4.7%)