HCal Simulation Studies

Steven Green

University of Cambridge

sg568@hep.phy.cam.ac.uk

January 13, 2015

目目 のへぐ

メロメ メ御 メメ ヨメ メヨメ

¹ [Introduction](#page-2-0)

² [Absorber Material](#page-4-0)

³ [Tile Size](#page-8-0)

⁴ [Thickness](#page-11-0)

⁵ [Number of HCal Layers](#page-14-0)

⁶ [Conclusions](#page-16-0)

目目 のへぐ

メロメ メ御 メメ ヨメ メヨメ

Introduction

The main aim of these studies is to optimise the physics performance of the HCal in the context of a future linear collider. These studies are focused on ILD.

Figure : 500 GeV Di-Jet.

The figure of merit used to judge detector performance is the jet energy resolution. This is determined from the decay of off-shell mass Z bosons to light quarks, which typically forms two mono energetic back to back jets.

Key topics to be analysed:

HCal Absorber Material

Choice between steel and tungsten. Steel is default in ILD detector model.

HCal Tile Size

Default for ILD is 30×30 mm². HCal cell size variation will primarily impact pattern recognition in Particle Flow calorimetry.

HCal Thickness

Default is 5.72 λ_I . HCal thickness variation will primarily impact intrinsic energy resolution in Particle Flow calorimetry.

Number of HCal Layers

Default number of layers is 48, which corresponds to 5.72 λ_I . This will determine the impact of leakage out of the detector.

Calibration

For each difference detector model a calibration procedure must be applied to ensure reliability in the results being produced. The calibration procedure breaks down into two distinct phases:

Digitisation

Setting of the digitisation constants. These convert the ADC current into an energy deposition measurement in each calorimeter cell.

PandoraPFA Calibration

- ADC to MIPs, which are used as an energy measure within PandoraPFA.
- Energy rescaling factors used to differentiate hadronic and electromagnetic energy deposition measurements within the calorimeters.

HCal Absorber Material

- Steel and tungsten HCal absorber materials have been considered in this analysis.
- With the exception of the absorber material, the analysis was performed using the default ILD detector model.
- This decision was recently made for the CLIC detector and in an attempt to contribute to these studies realistic timing cuts were applied in the HCal for these studies.
- A 10ns timing cut was used for the steel HCals studied and a 100ns timing cut was used for the tungsten HCals studied.
- An added complication was the choice of physics list
	- QGSP BERT: Default list, quick.
	- QGSP BERT HP: Similar to QGSP BERT but with the addition of the high precision neutron package (deals with transportation of neutrons below 20MeV down to thermal energies), more realistic but slower.
- For completion both physics lists were used in the analysis.

 $F = \Omega Q$

メロト メ何ト メミト メミト

[Absorber Material](#page-5-0)

Jet Energy Resolution Variation with HCal Absorber Material

Summary

- Similar performance using different physics lists for steel HCal.
- **•** Large difference between performance using different physics lists for tungsten HCal.
- **•** Comparable performance between steel and tungsten HCal.

Figure : Jet energy resolution vs jet energy for a steel HCal using the QGSP BERT and QGSP BERT HP physics lists.

Figure : Jet energy resolution vs jet energy for a tungsten HCal using the QGSP BERT and QGSP BERT HP physics lists.

K ロ ト K 何 ト K ヨ ト

 Ω

[Absorber Material](#page-6-0)

Jet Energy Resolution Breakdown for Steel HCal Absorber Material

Figure : Jet energy resolution breakdown vs jet energy using a steel HCal using Physics List QGSP BERT.

Figure : Jet energy resolution breakdown vs jet energy using a steel HCal using Physics List QGSP BERT HP.

Summary

Similar breakdown of jet energy resolution for both physics lists when considering a steel HCal.

Jet Energy Resolution Breakdown for Tungsten HCal Absorber Material

Figure : Jet energy resolution breakdown vs jet energy using a tungsten HCal using Physics List QGSP BERT.

Figure : Jet energy resolution breakdown vs jet energy using a tungsten HCal using Physics List QGSP BERT HP.

Di-Jet Energy / GeV

Summary

K ロ ▶ K 何 ▶ K 手

- QGSP_BERT physics lists overestimates the energy resolution for a tungsten HCal.
- **This confusion terms are** comparable using both physics lists.
- **a** This leads to worse performance using the QGSP BERT HP physics lists than using the QGSP_BERT physics list.

HCal Tile Size

- Consider variations in the HCal tile size. Default value is 30×30 mm².
- The detectors modelled in this study have a steel HCal and use the QGSP BERT physics list.
- The values of tile sizes considered in this study are:
	- \bullet 10 \times 10mm²
	- 20×20 mm²
	- \bullet 30 \times 30mm²
	- 40×40 mm²
	- \bullet 50 \times 50mm²
- It is expected that these changes will impact the confusion term within the jet energy resolution.

Added Complications

- HCal cell hadronic energy truncation (implemented to limit impact of Landau fluctuations and beneficial for infinite timing cuts)
- HCal timing cuts.

For completion results have been produced using both a hadronic energy truncation of 1GeV and no energy truncation, as well as using a 10ns and an infinite timing cut in the HCal.

K ロ > K 個 > K ミ > K ミ > (로) = 10 0 0 0

Summary of HCal Tile Size Results

Summary

- Reducing HCal tile size improves the jet energy resolution.
- The magnitude of the change in jet energy resolution between detector models is dominated by timing cuts and energy truncation.
- Studies are being performed to fully understand the impact of timing cuts on jet energy resolution.

 Ω

K ロ ト K 何 ト K 目

[Thickness](#page-11-0)

HCal Thickness

- Look into varying the total HCal thickness. Default number of nuclear interaction lengths in **ILD** is 5.72 λ_I .
- The detectors modelled in this study have a steel HCal, a 30 \times 30mm 2 tile size and use the QGSP_BERT physics list.
- The values of total number of interaction lengths in the HCal considered in this study are:
	- \bullet 4.58 λ_1 80% 2 5.15 λ_1 90%
	-
	- \bullet 5.72 λ , 100% Default
	- \bullet 6.29 λ , 110%
	- 6.86 λ_1 120%
- It is expected that these changes will impact the leakage term within the jet energy resolution.

Added Complications

- HCal cell hadronic energy truncation.
- HCal timing cuts.

For completion results have been produced using both a hadronic energy truncation of 1GeV and no energy truncation, as well as using a 10ns and an infinite timing cut in the HCal.

K ロ > K 個 > K 로 > K 로 > 트립 = K 9 Q @

HCal Timing Cut: TC, HCal Cell Hadronic Energy Truncation: ET

Summary of HCal Thickness Results

Summary

- Thicker HCals perform better in terms of jet energy resolution, especially at high energies where leakage starts to become prominent.
- The magnitude of the change in jet energy resolution between detector models is not dominated by timing cuts and energy truncation, but the absolute jet energy resolutions are.
- Again studies are being performed to fully understand the impact of timing cuts on jet energy resolution.

 $E|E \cap Q \cap Q$

K ロ ト K 何 ト K ヨ ト

Number of HCal Layers

- The final study looks at varying the number of layers in the HCal.
- The default number of layers in the ILD detector is 48, which corresponds to 5.72 $\lambda_I.$
- This study has been performed using both a steel and tungsten HCal.

ミミ のなべ

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{P} \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right\} \end{array} \right.$

Number of HCal Layers

HCal Laver Number Variation, Constant Number of λ I. Steel HCal

o Steel HCal.

←ロ ▶ ← イ 同 →

- Infinite timing cut in HCal.
- HCal cell hadronic energy truncation 1 GeV.
- QGSP BERT physics list.

Summary

• Relatively small degradation in detector performance when reducing layer number.

Figure : Jet energy resolution breakdown vs number of HCal layers using a steel HCal.

 QQ

- Extensive study of detector performance as a function of HCal absorber material, tile size, thickness and layer number has been performed.
- Steel is comparable in performance to tungsten as a HCal absorber material.
- Smaller HCal tile sizes reduce improve the jet energy resolution by reducing confusion in jet reconstruction.
- **Thicker HCals reduce the impact of leakage out of the back of the detector.**
- The impact of changing the number of layers in the HCal is smaller than initially expected.

Key Future Work

- Fully understand the impact of timing cuts in the HCal.
- Develop more sophisticated hadronic energy corrections to remove the hadronic energy truncation in the HCal cells.

 $E|E$ Ω

イロト イ押 トイヨ トイヨ

Thank You

目目 のへぐ

 $\mathcal{A} \left(\Box \right) \rightarrow \mathcal{A} \left(\overline{\mathcal{B}} \right) \rightarrow \mathcal{A} \left(\overline{\mathcal{B}} \right) \rightarrow \mathcal{A} \left(\overline{\mathcal{B}} \right) \rightarrow$

Figure : Minimum number of calibration constants needed for each detector model. Missing off the list is ECal timing cuts, Pandora minimum threshold cuts, non linearity corrections...

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ) = 19 0 0 0

Timing Cut Differences - Visual Display

Figure : 500 GeV Di-Jet, Left: HCal Timing Cut 10 ns, Right: HCal Timing Cut 10^6 .

 Ω

Figure : 91 GeV Di-Jet Energy, Steel [HC](#page-19-0)a[l.](#page-21-0)

 Ω

Figure : 200 GeV Di-Jet Energy, Steel [HC](#page-20-0)[al.](#page-22-0) 4 Ω

Steven Green (University of Cambridge) **[ILD Detector Optimisation](#page-0-0)** January 13, 2015 4/10

Figure : 360 GeV Di-Jet Energy, Steel [HC](#page-21-0)[al.](#page-23-0) (B) Ω

Steven Green (University of Cambridge) **[ILD Detector Optimisation](#page-0-0)** January 13, 2015 5 / 10

Figure : 500 GeV Di-Jet Energy, Steel [HC](#page-22-0)[al.](#page-24-0) Ω

Steven Green (University of Cambridge) **[ILD Detector Optimisation](#page-0-0)** January 13, 2015 6 / 10

Figure : 91 GeV Di-Jet Energy, Tungst[en H](#page-23-0)[Cal](#page-25-0)[.](#page-23-0) Ω

Steven Green (University of Cambridge) **[ILD Detector Optimisation](#page-0-0)** January 13, 2015 7 / 10

Figure : 200 GeV Di-Jet Energy, Tungst[en](#page-24-0) H[Ca](#page-26-0)[l.](#page-24-0) Ω

Steven Green (University of Cambridge) **[ILD Detector Optimisation](#page-0-0)** January 13, 2015 8 / 10

Figure : 360 GeV Di-Jet Energy, Tungst[en](#page-25-0) H[Ca](#page-27-0)[l.](#page-25-0) Ω

Steven Green (University of Cambridge) **[ILD Detector Optimisation](#page-0-0)** January 13, 2015 9 / 10

Figure : 500 GeV Di-Jet Energy, Tungst[en](#page-26-0) H[Ca](#page-27-0)[l.](#page-26-0)

Steven Green (University of Cambridge) **[ILD Detector Optimisation](#page-0-0)** January 13, 2015 10 / 10

 Ω