ILD tracker performance: the prize for a smaller detector

Mikael Berggren¹

¹DESY, Hamburg

9th ILD optimization meeting, Feb 11, 2015

Outline

2 Introduction

- Effects of Tracking geometry
 - Geometry used
- 5 Results: helix parameters
- 6 Results: Higgs recoil-mass @ 350 GeV

Conclusions

Present optimisation studies

Detector-component optimisation in ILD (post DBD):

- Presently
- Mainly has been about ECal
- Aimed at cost-reduction.
- Only considers JER as metric mainly for highest energy jets.
- Studies on:
 - Sensitive detector technology
 - Number of layers
 - Radius and/or length

This will have implications on the tracker! What is the prize to pay in tracker - and ultimately physics - performance !?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Present optimisation studies

Detector-component optimisation in ILD (post DBD):

- Presently
- Mainly has been about ECal
- Aimed at cost-reduction.
- Only considers JER as metric mainly for highest energy jets.
- Studies on:
 - Sensitive detector technology
 - Number of layers
 - Radius and/or length

This will have implications on the tracker! What is the prize to pay in tracker - and ultimately physics - performance !?

イロト イヨト イヨト イヨト

Present optimisation studies

Detector-component optimisation in ILD (post DBD):

- Presently
- Mainly has been about ECal
- Aimed at cost-reduction.
- Only considers JER as metric mainly for highest energy jets.
- Studies on:
 - Sensitive detector technology
 - Number of layers
 - Radius and/or length

This will have implications on the tracker! What is the prize to pay in tracker - and ultimately physics - performance !?

Effects of Tracking geometry

Reminder:

- Δ(1/p_T) ∝L^{-2.5} (2 purely geometric + (≥) 0.5 because of less points in TPC).
 - But only linear in σ_{point} and B-field
- Please note: Stored energy in B-field \$\sim B^2 V\$, so at equal stored energy, a smaller detector can have a higher field.
- Also: $\sigma_{point,TPC}^2 = \sigma_0^2(\sin \phi) + \frac{C_d^2(B)}{N_{eff}(\sin \theta)}Z$, $C_d^2(B) \propto 1/(1 + (\mu B)^2) \Rightarrow$ complicated relation, but gets better with shorter drift-length and higher *B*.
- Also: Higher B-field ⇒ possible to have smaller beam-pipe/vertex-detector ⇒ better IP-resolution.

Detailed estimation: SGV

- The description of the point-errors in the TPC have been extended to include all the terms in the description. Inputs:
 - $\sigma_{R\phi}$ and at σ_Z zero drift length.
 - Zero B-field diffusion in $R\phi$.
 - Mobility.
 - Track-radial direction angle dependence of $\sigma_{R\phi}$.
 - Ratio of diffusion in Z and R ϕ , default 2.

Numbers (mostly) from Ron Settles for T2K gas.

- Replace the default simplified TPC layer structure (pad-rows grouped by 9) to the full 225 layers ILD to simplify scaling.
- Script to scale the default ILD.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TPC point-resolution vs. Z and B in SGV and DBD

- Points: Prototype measurements (from DBD/DBD SVN)
- Lines: Formula used in SGV.

Mikael Berggren (DESY)

• If the B field goes from

- ... 3.5 T to
- ... 5 T,
- the cone of beam-strahlung pairs get squeezed.
- The radius of the edge of the cone \propto 1/B.

Reduce $R_{VTX-inner}$ in proportion to $B \Rightarrow$ better σ_{ip}

< ロ > < 同 > < 回 > < 回 >

- If the B field goes from
- ... 3.5 T to
- ... 5 T,
- the cone of beam-strahlung pairs get squeezed.
- The radius of the edge of the cone \propto 1/B.

Reduce $R_{VTX-inner}$ in proportion to B \Rightarrow better σ_{ip}

- If the B field goes from
- ... 3.5 T to
- ... 5 T,
- the cone of beam-strahlung pairs get squeezed.
- The radius of the edge of the cone \propto 1/B.

Reduce $R_{VTX-inner}$ in proportion to B \Rightarrow better σ_{ip}

- If the B field goes from
- ... 3.5 T to
- ... 5 T,
- the cone of beam-strahlung pairs get squeezed.
- The radius of the edge of the cone \propto 1/B.

Reduce $R_{VTX-inner}$ in proportion to B \Rightarrow better σ_{ip}

A (10) A (10) A (10)

- If the B field goes from
- ... 3.5 T to
- ... 5 T,
- the cone of beam-strahlung pairs get squeezed.
- The radius of the edge of the cone \propto 1/B.

Reduce $R_{VTX-inner}$ in proportion to $B \Rightarrow$ better σ_{ip} .

< 同 > < 回 > .

I studied five different ways to change the ILD baseline geometry. For each of these I did modifications in 5 steps:

- Keep baseline aspect ratio.
- ② Keep baseline radius.
- Keep aspect ratio = 1
- Keep baseline length.
- Keep length = baseline-40 cm.

(All showing the largest modification using SGV:s detector description visualiser)

Mikael Berggren (DESY)

I studied five different ways to change the ILD baseline geometry. For each of these I did modifications in 5 steps:

- Keep baseline aspect ratio.
- Keep baseline radius.
- Keep aspect ratio = 1
- Keep baseline length.
- Keep length = baseline-40 cm.

(All showing the largest modification using SGV:s detector description visualiser)

Mikael Berggren (DESY)

I studied five different ways to change the ILD baseline geometry. For each of these I did modifications in 5 steps:

- Keep baseline aspect ratio.
- 8 Keep baseline radius.
- Keep aspect ratio = 1
- Keep baseline length.
- Keep length = baseline-40 cm.

(All showing the largest modification using SGV:s detector description visualiser)

Mikael Berggren (DESY)

I studied five different ways to change the ILD baseline geometry. For each of these I did modifications in 5 steps:

- Keep baseline aspect ratio.
- 8 Keep baseline radius.
- Keep aspect ratio = 1
- Keep baseline length.
- Keep length = baseline-40 cm.

(All showing the largest modification using SGV:s detector description visualiser)

Mikael Berggren (DESY)

ILD tracker size

I studied five different ways to change the ILD baseline geometry. For each of these I did modifications in 5 steps:

- Keep baseline aspect ratio.
- 8 Keep baseline radius.
- Keep aspect ratio = 1
- Keep baseline length.
- Keep length = baseline-40 cm.

(All showing the largest modification using SGV:s detector description visualiser)

Mikael Berggren (DESY)

ILD tracker size

I studied five different ways to change the ILD baseline geometry. For each of these I did modifications in 5 steps:

- Keep baseline aspect ratio.
- e Keep baseline radius.
- Keep aspect ratio = 1
- Keep baseline length.
- Keep length = baseline-40 cm.

(All showing the largest modification using SGV:s detector description visualiser)

Mikael Berggren (DESY)

ILD tracker size

I studied five different ways to change the ILD baseline geometry. For each of these I did modifications in 5 steps:

- Keep baseline aspect ratio.
- e Keep baseline radius.
- Keep aspect ratio = 1
- Keep baseline length.
- Keep length = baseline-40 cm.

(All showing the largest modification using SGV:s detector description visualiser)

Mikael Berggren (DESY)

I studied five different ways to change the ILD baseline geometry. For each of these I did modifications in 5 steps:

- Keep baseline aspect ratio.
- e Keep baseline radius.
- Keep aspect ratio = 1
- Keep baseline length.
- Keep length = baseline-40 cm.

(All showing the largest modification using SGV:s detector description visualiser)

Mikael Berggren (DESY)

I studied five different ways to change the ILD baseline geometry. For each of these I did modifications in 5 steps:

- Keep baseline aspect ratio.
- e Keep baseline radius.
- Keep aspect ratio = 1
- Keep baseline length.
- Keep length = baseline-40 cm.

(All showing the largest modification using SGV:s detector description visualiser)

Mikael Berggren (DESY)

I studied five different ways to change the ILD baseline geometry. For each of these I did modifications in 5 steps:

- Keep baseline aspect ratio.
- e Keep baseline radius.
- Keep aspect ratio = 1
- Keep baseline length.
- Keep length = baseline-40 cm.

(All showing the largest modification using SGV:s detector description visualiser)

Mikael Berggren (DESY)

I studied five different ways to change the ILD baseline geometry. For each of these I did modifications in 5 steps:

- Keep baseline aspect ratio.
- Ø Keep baseline radius.
- Keep aspect ratio = 1
- Keep baseline length.
- Keep length = baseline-40 cm.

(All showing the largest modification using SGV:s detector description visualiser)

Mikael Berggren (DESY)

Apart from the pure modifications of the geometry, I considered

- Only Outer extent of the TPC modified. Everything outside was also moved, as was the FTD strip-discs. VTX, SIT and FTD pixels unchanged.
- Also modify B, keeping B²V constant (V=volume of solenoid).
- Keep B fixed, but modify TPC inner radius (and hence the outer layer of the SIT and the outer radius of the FTD discs.)
- Both 2 and 3.
- In addition to 4, also scale beam-pipe and VTX-inner with B.
- Scale B and beam-pipe/VTX-inner, but not TPC inner radius.

In addition to this, I also considered changing the default ILD B from 3.5T to 4T (as the magnet is designed for 4T)

Apart from the pure modifications of the geometry, I considered

- Only Outer extent of the TPC modified. Everything outside was also moved, as was the FTD strip-discs. VTX, SIT and FTD pixels unchanged.
- 2 Also modify B, keeping $B^2 V$ constant (V=volume of solenoid).
- Keep B fixed, but modify TPC inner radius (and hence the outer layer of the SIT and the outer radius of the FTD discs.)
- Both 2 and 3.
- In addition to 4, also scale beam-pipe and VTX-inner with B.
- Scale B and beam-pipe/VTX-inner, but not TPC inner radius.

In addition to this, I also considered changing the default ILD B from 3.5T to 4T (as the magnet is designed for 4T)

Apart from the pure modifications of the geometry, I considered

- Only Outer extent of the TPC modified. Everything outside was also moved, as was the FTD strip-discs. VTX, SIT and FTD pixels unchanged.
- Also modify B, keeping B² V constant (V=volume of solenoid).
- Keep B fixed, but modify TPC inner radius (and hence the outer layer of the SIT and the outer radius of the FTD discs.)
- Both 2 and 3.
- In addition to 4, also scale beam-pipe and VTX-inner with B.
- Scale B and beam-pipe/VTX-inner, but not TPC inner radius.

In addition to this, I also considered changing the default ILD B from 3.5T to 4T (as the magnet is designed for 4T)

Apart from the pure modifications of the geometry, I considered

- Only Outer extent of the TPC modified. Everything outside was also moved, as was the FTD strip-discs. VTX, SIT and FTD pixels unchanged.
- Also modify B, keeping B² V constant (V=volume of solenoid).
- Keep B fixed, but modify TPC inner radius (and hence the outer layer of the SIT and the outer radius of the FTD discs.)
- Both 2 and 3.
- In addition to 4, also scale beam-pipe and VTX-inner with B.
- Scale B and beam-pipe/VTX-inner, but not TPC inner radius.

In addition to this, I also considered changing the default ILD B from 3.5T to 4T (as the magnet is designed for 4T)

Apart from the pure modifications of the geometry, I considered

- Only Outer extent of the TPC modified. Everything outside was also moved, as was the FTD strip-discs. VTX, SIT and FTD pixels unchanged.
- Also modify B, keeping B² V constant (V=volume of solenoid).
- Keep B fixed, but modify TPC inner radius (and hence the outer layer of the SIT and the outer radius of the FTD discs.)
- Both 2 and 3.
- In addition to 4, also scale beam-pipe and VTX-inner with B.
- Scale B and beam-pipe/VTX-inner, but not TPC inner radius.

In addition to this, I also considered changing the default ILD B from 3.5T to 4T (as the magnet is designed for 4T)

Apart from the pure modifications of the geometry, I considered

- Only Outer extent of the TPC modified. Everything outside was also moved, as was the FTD strip-discs. VTX, SIT and FTD pixels unchanged.
- Also modify B, keeping B² V constant (V=volume of solenoid).
- Keep B fixed, but modify TPC inner radius (and hence the outer layer of the SIT and the outer radius of the FTD discs.)
- Both 2 and 3.
- In addition to 4, also scale beam-pipe and VTX-inner with B.
- Scale B and beam-pipe/VTX-inner, but not TPC inner radius.

In addition to this, I also considered changing the default ILD B from 3.5T to 4T (as the magnet is designed for 4T)

Apart from the pure modifications of the geometry, I considered

- Only Outer extent of the TPC modified. Everything outside was also moved, as was the FTD strip-discs. VTX, SIT and FTD pixels unchanged.
- Also modify B, keeping B² V constant (V=volume of solenoid).
- Keep B fixed, but modify TPC inner radius (and hence the outer layer of the SIT and the outer radius of the FTD discs.)
- Both 2 and 3.
- In addition to 4, also scale beam-pipe and VTX-inner with B.
- Scale B and beam-pipe/VTX-inner, but not TPC inner radius.

In addition to this, I also considered changing the default ILD B from 3.5T to 4T (as the magnet is designed for 4T)

Apart from the pure modifications of the geometry, I considered

- Only Outer extent of the TPC modified. Everything outside was also moved, as was the FTD strip-discs. VTX, SIT and FTD pixels unchanged.
- 2 Also modify B, k $2 \times 5 \times 5 \times 6 = 300$ cases !

ne of solenoid).

- Both 2 and 3.
- In addition to 4, also scale beam-pipe and VTX-inner with B.
- Scale B and beam-pipe/VTX-inner, but not TPC inner radius.

In addition to this, I also considered changing the default ILD B from 3.5T to 4T (as the magnet is designed for 4T)

Check $\Delta(1/p)$ and $\Delta(ip_{R\phi})$ at different p and $\cos\theta$ ($\Delta(ip_Z)$ similar to $\Delta(ip_{R\phi})$, angles not relevant - the other uncertainties dominate)

- Red/magenta: fixed aspect-ratio, decrease size.
- Blue: fixed R, decrease Z.
- Green/orange: fixed Z, decrease R.
- Black: TDR detector.
- $\Delta(1/p)$ vs. $\cos\theta$
- Rel. $\Delta(1/p)$ vs. $\cos \theta$
- Rel. Δ(1/p) vs. p
- Rel. $\Delta(ip_{R\phi})$ vs. p

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Check $\Delta(1/p)$ and $\Delta(ip_{R\phi})$ at different p and $\cos\theta$ ($\Delta(ip_Z)$ similar to $\Delta(ip_{R\phi})$, angles not relevant - the other uncertainties dominate)

- Red/magenta: fixed aspect-ratio, decrease size.
- Blue: fixed R, decrease Z.
- Green/orange: fixed Z, decrease R.
- Black: TDR detector.
- $\Delta(1/p)$ vs. $\cos \theta$
- Rel. $\Delta(1/p)$ vs. $\cos\theta$
- Rel. Δ(1/p) vs. p
- Rel. $\Delta(ip_{R\phi})$ vs. p

Check $\Delta(1/p)$ and $\Delta(ip_{R\phi})$ at different p and $\cos \theta$ ($\Delta(ip_Z)$ similar to $\Delta(ip_{R\phi})$, angles not relevant - the other uncertainties dominate)

- Red/magenta: fixed aspect-ratio, decrease size.
- Blue: fixed R, decrease Z.
- Green/orange: fixed Z, decrease R.
- Black: TDR detector.
- $\Delta(1/p)$ vs. $\cos \theta$
- Rel. $\Delta(1/p)$ vs. $\cos \theta$
- Rel. Δ(1/p) vs. p
- Rel. $\Delta(ip_{R\phi})$ vs. p

Check $\Delta(1/p)$ and $\Delta(ip_{R\phi})$ at different p and $\cos\theta$ ($\Delta(ip_Z)$ similar to $\Delta(ip_{R\phi})$, angles not relevant - the other uncertainties dominate)

- Red/magenta: fixed aspect-ratio, decrease size.
- Blue: fixed R, decrease Z.
- Green/orange: fixed Z, decrease R.
- Black: TDR detector.
- $\Delta(1/p)$ vs. $\cos \theta$
- Rel. $\Delta(1/p)$ vs. $\cos \theta$
- Rel. Δ(1/p) vs. p
- Rel. $\Delta(ip_{R\phi})$ vs. p

Check $\Delta(1/p)$ and $\Delta(ip_{R\phi})$ at different p and $\cos\theta$ ($\Delta(ip_Z)$ similar to $\Delta(ip_{R\phi})$, angles not relevant - the other uncertainties dominate)

- Red/magenta: fixed aspect-ratio, decrease size.
- Blue: fixed R, decrease Z.
- Green/orange: fixed Z, decrease R.
- Black: TDR detector.
- $\Delta(1/p)$ vs. $\cos \theta$
- Rel. $\Delta(1/p)$ vs. $\cos \theta$
- Rel. Δ(1/p) vs. p
- Rel. $\Delta(ip_{R\phi})$ vs. p

The point of the exercise is to reduce the size (=area) of the calorimeters (in particular ECal). Here I show the performance as a function of $A_{ECal}/A_{ECal,TDR}$

- Circles/triangles: fixed aspect-ratio.
- Squares: fixed R.
- Stars/inv. triangles: fixed Z.
- $\Delta(1/p)$, barrel.
- $\Delta(1/p)$, endcap.
- $\Delta(ip_{R\phi})$, barrel.
- $\Delta(ip_{R\phi})$, endcap.

Filled: Only modify geometry; Open: also do other changes.

Mikael Berggren (DESY)

The point of the exercise is to reduce the size (=area) of the calorimeters (in particular ECal). Here I show the performance as a function of $A_{ECal}/A_{ECal,TDR}$

- Circles/triangles: fixed aspect-ratio.
- Squares: fixed R.
- Stars/inv. triangles: fixed Z.
- $\Delta(1/p)$, barrel.
- $\Delta(1/p)$, endcap.
- $\Delta(ip_{R\phi})$, barrel.
- $\Delta(ip_{R\phi})$, endcap.

Filled: Only modify geometry; Open: also do other changes.

Mikael Berggren (DESY)

The point of the exercise is to reduce the size (=area) of the calorimeters (in particular ECal). Here I show the performance as a function of $A_{ECal}/A_{ECal,TDR}$

- Circles/triangles: fixed aspect-ratio.
- Squares: fixed R.
- Stars/inv. triangles: fixed Z.
- $\Delta(1/p)$, barrel.
- $\Delta(1/p)$, endcap.
- $\Delta(ip_{R\phi})$, barrel.
- $\Delta(ip_{R\phi})$, endcap.

Filled: Only modify geometry; Open: also do other changes.

Mikael Berggren (DESY)

The point of the exercise is to reduce the size (=area) of the calorimeters (in particular ECal). Here I show the performance as a function of $A_{ECal}/A_{ECal,TDR}$

- Circles/triangles: fixed aspect-ratio.
- Squares: fixed R.
- Stars/inv. triangles: fixed Z.
- $\Delta(1/p)$, barrel.
- $\Delta(1/p)$, endcap.
- $\Delta(ip_{R\phi})$, barrel.

• $\Delta(ip_{R\phi})$, endcap.

Filled: Only modify geometry; Open: also do other changes.

Mikael Berggren (DESY)

The point of the exercise is to reduce the size (=area) of the calorimeters (in particular ECal). Here I show the performance as a function of $A_{ECal}/A_{ECal,TDR}$

- Circles/triangles: fixed aspect-ratio.
- Squares: fixed R.
- Stars/inv. triangles: fixed Z.
- $\Delta(1/p)$, barrel.
- $\Delta(1/p)$, endcap.
- $\Delta(ip_{R\phi})$, barrel.
- $\Delta(ip_{R\phi})$, endcap.

Filled: Only modify geometry; Open: also do other changes.

Mikael Berggren (DESY)

The same, but assume increasing B to 4T already in the baseline:

- Circles/triangles: fixed aspect-ratio.
- Squares: fixed R.
- Stars/inv. triangles: fixed Z.
- $\Delta(1/p)$, barrel.
- $\Delta(1/p)$, endcap.
- $\Delta(ip_{R\phi})$, barrel.
- $\Delta(ip_{R\phi})$, endcap.

Filled: Only modify geometry; Open: also do other changes.

The same, but assume increasing B to 4T already in the baseline:

- Oircles/triangles: fixed aspect-ratio.
- Squares: fixed R.
- Stars/inv. triangles: fixed Z.
- $\Delta(1/p)$, barrel.
- $\Delta(1/p)$, endcap.
- $\Delta(ip_{B\phi})$, barrel.
- $\Delta(ip_{B\phi})$, endcap.

Mikael Berggren (DESY)

The same, but assume increasing B to 4T already in the baseline:

- Circles/triangles: fixed aspect-ratio.
- Squares: fixed R.
- Stars/inv. triangles: fixed Z.
- $\Delta(1/p)$, barrel.
- $\Delta(1/p)$, endcap.
- $\Delta(ip_{B\phi})$, barrel.
- $\Delta(ip_{B\phi})$, endcap.

dp, theta=30

Mikael Berggren (DESY)

The same, but assume increasing B to 4T already in the baseline:

- Oircles/triangles: fixed aspect-ratio.
- Squares: fixed R.
- Stars/inv. triangles: fixed Z.
- $\Delta(1/p)$, barrel.
- $\Delta(1/p)$, endcap.
- $\Delta(ip_{B\phi})$, barrel.
- $\Delta(ip_{B\phi})$, endcap.

Mikael Berggren (DESY)

The same, but assume increasing B to 4T already in the baseline:

- Oircles/triangles: fixed aspect-ratio.
- Squares: fixed R.
- Stars/inv. triangles: fixed Z.
- $\Delta(1/p)$, barrel.
- $\Delta(1/p)$, endcap.
- $\Delta(ip_{B\phi})$, barrel.
- $\Delta(ip_{B\phi})$, endcap.

- Look at $e^+e^- \rightarrow ZH$, $Z \rightarrow \mu^+\mu^-, H \rightarrow X$.
- Signal only, perfect μ finding, SGV.
- Recoil-mass = $\sqrt{(E_Z - E_{CMS})^2 - \bar{p}_Z^2}$, where $E_Z = E_{\mu^+} + E_{\mu^-}, \bar{p}_Z =$ $\bar{p}_{\mu^+} + \bar{p}_{\mu^-},$ $E_{CMS} =$ nominal=350.
- So,it's all about measuring the μ:s !
- Note: E range 20 to 160, θ in barrel.

・四・・ モ・・ モート

- Look at $e^+e^- \rightarrow ZH$, $Z \rightarrow \mu^+\mu^-, H \rightarrow X$.
- Signal only, perfect μ finding, SGV.
- Recoil-mass = $\sqrt{(E_Z - E_{CMS})^2 - \bar{p}_Z^2}$, where $E_Z = E_{\mu^+} + E_{\mu^-}, \bar{p}_Z =$ $\bar{p}_{\mu^+} + \bar{p}_{\mu^-},$ $E_{CMS} =$ nominal=350.
- So,it's all about measuring the μ:s !
- Note: E range 20 to 160, θ in barrel.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Look at $e^+e^- \rightarrow ZH$, $Z \rightarrow \mu^+\mu^-, H \rightarrow X$.
- Signal only, perfect μ finding, SGV.
- Recoil-mass = $\sqrt{(E_Z - E_{CMS})^2 - \bar{p}_Z^2}$, where $E_Z = E_{++} + E_{--} \bar{p}_Z =$

$$E_Z = E_{\mu^+} + E_{\mu^-}, p_Z = \bar{p}_{\mu^+} + \bar{p}_{\mu^-}, E_{CMS} = \text{nominal} = 350.$$

- So,it's all about measuring the μ:s !
- Note: E range 20 to 160, θ in barrel.

Mikael Berggren (DESY)

9th ILD opt 13 / 17

- Look at $e^+e^- \rightarrow ZH$, $Z \rightarrow \mu^+\mu^-, H \rightarrow X$.
- Signal only, perfect μ finding, SGV.
- Recoil-mass = $\sqrt{(E_Z - E_{CMS})^2 - \bar{p}_Z^2}$, where $E_Z = E_{\mu^+} + E_{\mu^-}, \bar{p}_Z =$
 - $ar{p}_{\mu^+}+ar{p}_{\mu^-},\ E_{CMS}= ext{nominal=350}.$
- So,it's all about measuring the μ:s !
- Note: E range 20 to 160, θ in barrel.

Mikael Berggren (DESY)

9th ILD opt 13 / 17

Higgs recoil-mass @ 350 GeV: The recoil mass

- *E_{CMS}* ≠nominal, due to beam spectrum.
- Assume E_{CMS} known
 ⇒ see effect of detector alone.
- Or: Assume μ:s perfectly measured ⇒ see effect of beam-spectrum alone.
- Fold the two: the observable distribution.

Higgs recoil-mass @ 350 GeV: The recoil mass

- *E_{CMS}* ≠nominal, due to beam spectrum.
- Assume E_{CMS} known
 ⇒ see effect of detector alone.
- Or: Assume μ:s perfectly measured ⇒ see effect of beam-spectrum alone.
- Fold the two: the observable distribution.

A (1) > A (2) > A

Higgs recoil-mass @ 350 GeV: The recoil mass

- *E_{CMS}* ≠nominal, due to beam spectrum.
- Assume E_{CMS} known
 ⇒ see effect of detector alone.
- Or: Assume µ:s perfectly measured ⇒ see effect of beam-spectrum alone.
- Fold the two: the observable distribution.

A (1) > A (2) > A

Higgs recoil-mass @ 350 GeV: The good, the bad, the ugly

- This shows observable recoil-mass for the nominal ILD (black), the worst case (red) and the best case (blue)
- ... and this shows the case if *E_{CMS}* would be known, ie. the pure detector effect.

Higgs recoil-mass @ 350 GeV: The good, the bad, the ugly

- This shows observable recoil-mass for the nominal ILD (black), the worst case (red) and the best case (blue)
- ... and this shows the case if *E_{CMS}* would be known, ie. the pure detector effect.

To substantiate: Fit the recoil-mass (Gaussian from 120 to 126.5 GeV in the observable case, free Gaussian in the E_{CMS} -known case)

- $\sigma_{M-recoil}$ for a representative set of options.
- Same, but in the "4T" case.
- $\sigma_{M-recoil}$ for a representative set of options, if E_{CMS} would be known.
- Same, but in the "4T" case.

Mikael Berggren (DESY)

To substantiate: Fit the recoil-mass (Gaussian from 120 to 126.5 GeV in the observable case, free Gaussian in the E_{CMS} -known case)

- σ_{M-recoil} for a representative set of options.
- Same, but in the "4T" case.
- $\sigma_{M-recoil}$ for a representative set of options, if E_{CMS} would be known.
- Same, but in the "4T" case.

Mikael Berggren (DESY)

9th ILD opt 16 / 17

To substantiate: Fit the recoil-mass (Gaussian from 120 to 126.5 GeV in the observable case, free Gaussian in the E_{CMS} -known case)

- σ_{M-recoil} for a representative set of options.
- Same, but in the "4T" case.
- σ_{M-recoil} for a representative set of options, if *E_{CMS}* would be known.
- Same, but in the "4T" case.

Mikael Berggren (DESY)

To substantiate: Fit the recoil-mass (Gaussian from 120 to 126.5 GeV in the observable case, free Gaussian in the E_{CMS} -known case)

- σ_{M-recoil} for a representative set of options.
- Same, but in the "4T" case.
- σ_{M-recoil} for a representative set of options, if *E_{CMS}* would be known.
- Same, but in the "4T" case.

Mikael Berggren (DESY)

- A large number of possible ways to reduce the size of the ILD tracking system were studied.
- A number of auxiliary changes that a reduced size would allow for were also studied: Increased B-field, changes of the inner radius of the TPC and/or the vertex detector.
- The errors of the basic helix parameters were evaluated for all of these scanning in momentum at a few fixed θ angles or in θ at a few fixed momenta.
- In addition, the precision on M_H from the recoil-mass method was evaluated with with SGV for a sub-set of the options.
- All taken together, the option with $R_{TPC}=160$ cm and/or $Z_{max,TPC}$ between 230 and 190 cm would be a viable option, provided the B-field is increased.

 These values correspond to a reduction of the ECal area of between 15 and 25 %, and a B-field between 3.7 and 3.9 T (or 4.2 to 4.4, if the baseline field would be increased tor4 T and T area area area

Mikael Berggren (DESY)

ILD tracker size

9th ILD opt 17 / 17

- A large number of possible ways to reduce the size of the ILD tracking system were studied.
- A number of auxiliary changes that a reduced size would allow for were also studied: Increased B-field, changes of the inner radius of the TPC and/or the vertex detector.
- The errors of the basic helix parameters were evaluated for all of these scanning in momentum at a few fixed θ angles or in θ at a few fixed momenta.
- In addition, the precision on M_H from the recoil-mass method was evaluated with with SGV for a sub-set of the options.
- All taken together, the option with $R_{TPC}=160$ cm and/or $Z_{max,TPC}$ between 230 and 190 cm would be a viable option, provided the B-field is increased.

- A large number of possible ways to reduce the size of the ILD tracking system were studied.
- A number of auxiliary changes that a reduced size would allow for were also studied: Increased B-field, changes of the inner radius of the TPC and/or the vertex detector.
- The errors of the basic helix parameters were evaluated for all of these scanning in momentum at a few fixed θ angles or in θ at a few fixed momenta.
- In addition, the precision on M_H from the recoil-mass method was evaluated with with SGV for a sub-set of the options.
- All taken together, the option with $R_{TPC}=160$ cm and/or $Z_{max,TPC}$ between 230 and 190 cm would be a viable option, provided the B-field is increased.

 These values correspond to a reduction of the ECal area of between 15 and 25 %, and a B-field between 3.7 and 3.9 T (or 4.2 to 4.4, if the baseline field would be increased tor 4 T = 100 m = 100 m

Mikael Berggren (DESY)

ILD tracker size

9th ILD opt 17 / 17

- A large number of possible ways to reduce the size of the ILD tracking system were studied.
- A number of auxiliary changes that a reduced size would allow for were also studied: Increased B-field, changes of the inner radius of the TPC and/or the vertex detector.
- The errors of the basic helix parameters were evaluated for all of these scanning in momentum at a few fixed θ angles or in θ at a few fixed momenta.
- In addition, the precision on *M_H* from the recoil-mass method was evaluated with with SGV for a sub-set of the options.
- All taken together, the option with R_{TPC}=160 cm and/or Z_{max,TPC} between 230 and 190 cm would be a viable option, provided the B-field is increased.

- A large number of possible ways to reduce the size of the ILD tracking system were studied.
- A number of auxiliary changes that a reduced size would allow for were also studied: Increased B-field, changes of the inner radius of the TPC and/or the vertex detector.
- The errors of the basic helix parameters were evaluated for all of these scanning in momentum at a few fixed θ angles or in θ at a few fixed momenta.
- In addition, the precision on *M_H* from the recoil-mass method was evaluated with with SGV for a sub-set of the options.
- All taken together, the option with R_{TPC}=160 cm and/or Z_{max,TPC} between 230 and 190 cm would be a viable option, provided the B-field is increased.

 These values correspond to a reduction of the ECal area of between 15 and 25 %, and a B-field between 3.7 and 3.9 T (or 4.2 to 4.4, if the baseline field would be increased to 4 T)

Mikael Berggren (DESY)