

Proudly Operated by Baffelle Since 1965

# ttH experimental overview

#### JAN STRUBE

Pacific Northwest National Laboratory LCWS2015, Whistler, BC

Proudly Operated by Baffelle Since 1965







Search channel for the ttH coupling in direct production at all energies

- -- 4 b-jets
- -- (4-)6-8 jets

Simulate dependence of ttH cross section on top Yukawa coupling. Different from 0.5 mainly due to Higgsstrahlung

## **ILC Operating Scenarios**



- First measurement happens at 500 GeV!
- 350 GeV can use input to improve the top threshold measurement
  - Top Yukawa coupling known at time of the scan
- I will use energy ordering for this talk





## **Experimental Conditions**

Proudly Operated by Battelle Since 1965



Present at all energies, both, at CLIC and at ILC.
All measurements use strategies to mitigate these background processes

#### **Isolated Lepton Finding**



#### Two main strategies

- Isolated Lepton Finding: Calorimeter activity in cone around lepton (PID from PandoraPFA, or from ratio of calorimeter contributions)
  - Remove leptons from event before jet clustering
- Jet-based lepton finding: Include the leptons from the matrix element when forcing the event into N jets
  - Apply some cuts on the jet to identify it as an isolated lepton



Distribution of isolated leptons (red) from W decays in semileptonic ttH events and leptons in jets (blue)

#### Jet Finding



- Fastjet algorithms:
  - Force event into known number of jets taking into account isolated leptons
- Durham (used in all analyses as final step):
  - Sensitive to background processes (worse at higher energies)
  - Jet mass increases with background
  - Forward region picks up more background
- Anti-kt (used to remove background):
  - Hadron-collider kt algorithm: Beam Jets(!)
  - Picks up background in forward region as beam jet (could overlap with signal)
  - Uses eta rather than cosTheta
- Valencia
  - Weds the cosTheta distance with a beam jet
  - Reasonable background rejection and jet size rather independent of angle

### **Flavor Tagging**



- Common to all analyses: LCFIPlus
- Finds Vertices in all tracks before jet finding.
- ZVTop vertex finder
- Boosted decision trees, trained separately at each energy
  - Energy-dependent background rejection







Proudly Operated by Battelle Since 1965

Measure the top Yukawa coupling in a threshold scan

Higher order corrections to the top pair production cross section are sensitive to the top Yukawa coupling

▶ 11 point threshold scan (340 – 350 GeV), 10 / fb, 2 polarization

states, 220 / fb total

9% effect on cross section

4.2% statistical uncertainty







PS Top quark mass

# Top Yukawa at 500 GeV

► Sudo (ALCW15)

$$S/\sqrt{S+B}$$

| (Pe,Pe <sup>+</sup> )     | (-0.8,+0.3) |      | (+0.8,-0.3) |      |  |
|---------------------------|-------------|------|-------------|------|--|
| Lumi. (fb <sup>-1</sup> ) | 500         | 1600 | 500         | 1600 |  |
| 8 jets                    | 2.17        | 3.89 | 1.40        | 2.53 |  |
| lv + 6 jets               | 2.00        | 3.58 | 1.29        | 2.32 |  |
| 2l2v + 4 jets             | 1.02        | 1.83 | 0.72        | 1.31 |  |

Details in next talk

# Top Yukawa at 550 GeV



Proudly Operated by Battelle Since 1965

ILC is now 10% longer. If cryomodules perform to spec, 10% higher initial energy

Leads to more than 3fold increase in cross
section
> 2 times better
measurement



#### Top Yukawa at 1 TeV Price, et al. arXiv:1409.7157

Proudly Operated by Baffelle Since 1965





Strategy: Isolated lepton finding

$$\chi_{8 \text{ jets}}^{2} = \frac{(M_{12} - M_{W})^{2}}{\sigma_{W}^{2}} + \frac{(M_{123} - M_{t})^{2}}{\sigma_{t}^{2}} + \frac{(M_{45} - M_{W})^{2}}{\sigma_{W}^{2}}$$

$$\text{Ire} \qquad + \frac{(M_{456} - M_{t})^{2}}{\sigma_{t}^{2}} + \frac{(M_{78} - M_{H})^{2}}{\sigma_{W}^{2}}, \tag{1}$$

Jet reconstruction in the 6- or 8- jet signature  $+\frac{(M_{456}-M_{\rm t})^2}{\sigma_{\rm t}^2}+\frac{(M_{78}-M_{\rm H})^2}{\sigma_{\rm H}^2},$ 

Boosted decision trees

#### Signal Extraction at 1 TeV



Reconstruct Signal in both, 6-jet and 8-jet signature

Take into account signal cross-feed

**Table 2** Number of selected events for the different final states assuming an integrated luminosity of 1 ab<sup>-1</sup>. The values obtained for the sixand eight-jets final state selections are shown separately.

| Detector                            |             | IL         | LD     | SiD    |        |  |
|-------------------------------------|-------------|------------|--------|--------|--------|--|
| Sample                              | Before cuts | After Cuts |        |        |        |  |
|                                     |             | 6 jets     | 8 jets | 6 jets | 8 jets |  |
| tīH 6 jets                          | 628.7       | 208.0      | 65.5   | 191.6  | 57.4   |  |
| tīH 8 jets                          | 652.7       | 2.1        | 365.6  | 1.6    | 299.4  |  |
| $t\bar{t}H \rightarrow other$       | 1197.5      | 28.8       | 25.3   | 33.0   | 16.6   |  |
| $t ar{t} Z$                         | 5332.4      | 126.1      | 260.5  | 105.6  | 187.1  |  |
| $t\bar{t}b\overline{b}$             | 1434.5      | 125.4      | 222.6  | 100.1  | 180.7  |  |
| $t\overline{t}$                     | 308800.9    | 261.2      | 513.6  | 232.0  | 381.6  |  |
| $y_{\rm t}$ statistical uncertainty |             | 6.9%       | 5.4%   | 7.0%   | 5.8%   |  |
| combined                            |             | 4.3%       |        | 4.5%   |        |  |

Error on g(ttH) in 1 ab<sup>-1</sup> @ 1 TeV

Extapolated estimate for total ILC program ~2%

- ► CLIC 1.4 TeV, 1.5 ab<sup>-1</sup>
- Same basic strategy as ILC 1 TeV analysis
  - Added dedicated tau reconstruction, 2-jet reconstruction

Table 4: Selection efficiency for each event sample. Column 1 shows the simulated process. Column 2 shows the expected number of events in 1.5 ab<sup>-1</sup>. Column 3 shows the number of events in which 0 leptons were found. Column 4 shows the number (and percent) of these '0 lepton' events which pass the BDT trained for the hadronic channel. Column 5 shows the number of events in which 1 lepton was found. Column 6 shows the number (and percent) of these '1 lepton' events which pass the BDT trained for the semi-leptonic channel. The number of jets refers to the tt decay only.

| Process                                           | Evt in $1.5 \mathrm{ab^{-1}}$ | Evt with 0 leptons | Evt pas | s Had BDT | Evt with 1 lepton | Evt p | ass SL BDT |
|---------------------------------------------------|-------------------------------|--------------------|---------|-----------|-------------------|-------|------------|
| $t\bar{t}H$ , 6 jet, $H \rightarrow b\bar{b}$     | 647                           | 593                | 357     | (60.2%)   | 49                | 9     | (18.8%)    |
| $t\bar{t}H$ , 4 jet, $H \rightarrow b\bar{b}$     | 623                           | 178                | 62      | (35.1%)   | 420               | 233   | (55.3%)    |
| $t\bar{t}H$ , 2 jet, $H \rightarrow b\bar{b}$     | 150                           | 13                 | 1       | (10.7%)   | 61                | 20    | (32.5%)    |
| $t\bar{t}H$ , 6 jet, $H \not\rightarrow b\bar{b}$ | 473                           | 306                | 38      | (12.3%)   | 127               | 8     | (6.52%)    |
| $t\bar{t}H$ , 4 jet, $H \not\rightarrow b\bar{b}$ | 455                           | 89                 | 5       | (5.81%)   | 246               | 19    | (7.82%)    |
| $t\bar{t}H$ , 2 jet, $H \rightarrow b\bar{b}$     | 110                           | 6                  | 0       | (1.52%)   | 33                | 1     | (3.66%)    |
| $t\bar{t}b\bar{b}$ , 6 jet                        | 824                           | 737                | 287     | (38.9%)   | 80                | 8     | (9.75%)    |
| $t\bar{t}b\bar{b}$ , 4 jet                        | 794                           | 222                | 44      | (19.6%)   | 533               | 175   | (32.9%)    |
| $t\bar{t}b\bar{b}$ , 2 jet                        | 191                           | 16                 | 1       | (8.71%)   | 78                | 14    | (18.1%)    |
| tīZ, 6 jet                                        | 2,843                         | 2,335              | 316     | (13.5%)   | 322               | 12    | (3.68%)    |
| tīZ, 4 jet                                        | 2,738                         | 711                | 49      | (6.86%)   | 1,678             | 170   | (10.2%)    |
| tīZ, 2 jet                                        | 659                           | 54                 | 1       | (2.03%)   | 248               | 13    | (5.23%)    |
| tī                                                | 203,700                       | 111,020            | 1,399   | (1.26%)   | 77,110            | 523   | (0.68%)    |

Final number: 4.43% error on g(ttH)



Room for improvement



Example from ZHH analysis: realistic reco (left) vs. perfect reconstruction (right)

(including perfect jet reco:) 20% improvement

Current development: Jet clustering for EW states

Jet substructure not used

Personal estimate for achievable precision of top Yukawa precision at a Linear Collider:

<2%