2015 International Workshop on Future Linear Colliders

Ultra low β* optics at ATF2

Marcin Patecki^{1,2},

A. Aloev¹, D. Bett¹, E. Marin³, M. Modena¹, R. Tomás¹, G. White³

Ground motion feedforward at ATF2

Douglas Bett¹,

C. Charrondiere¹, A. Jeremie⁶, M. Patecki^{1,2}, J. Pfingstner^{1,7}, Y. Renier¹, D. Schulte¹, R. Tomás¹

K. Kubo^{4,5}, S. Kuroda^{4,5}, T. Okugi^{4,5}, T. Naito^{4,5}, T. Tauchi^{4,5}, N. Terunuma^{4,5}

¹ CERN, European Organization for Nuclear Research, Geneva, Switzerland.

² Warsaw University of Technology, Faculty of Physics, Poland.

³ SLAC, National Accelerator Laboratory, California, USA.

⁴ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan.

⁵ SOKENDAI, School of High Energy Accelerator Science, Hayama, Japan.

⁶ LAPP, Annecy Laboratory of Particle Physics, France.

⁷ University of Oslo, Norway.

Outline

Ultra low β* optics

- Motivation for ultra low β^* optics study
- Planned installation of octupoles
- Results of half β^* tuning
- Ground motion feed-forward
 - Current set-up and results from ATF2
 - Expected feed-forward performance

Accelerator Test Facility ATF2

- Test facility for future linear colliders located in KEK in Japan [1]
- World record of smallest vertical beam size: < 45 nm (design is 37 nm) [2,3]
- First Final Focus beam line using a local chromaticity correction scheme [4]

Motivation for ultra low β^* in ATF2

- ATF2 ultra low β* project [5] aims to test a Final Focus System (FFS) with a chromaticity similar to CLIC
 - Level of chromaticity ξ_v in ATF2 is comparable to ILC
 - Larger chromaticity ξ makes it more difficult to operate
- IP vertical beam size will be reduced to ~20 nm, allowing experience to be gained working in conditions similar to those of a linear collider
- Octupole magnets for stronger beam focusing are required

	β_{y}^{*} [µm]	$\sigma^*_{y, design}[nm]$	L* [m]	$\xi_{y} \sim (L^{*}/\beta_{y}^{*})$	
ILC	480	5.9	3.5/4.5	7300/9400	
CLIC	70	1	3.5	50000	
ATF2 nominal	100	37 (44 ^a)	1	10000	
ATF2 half β_y^*	50	25 ^b	1	20000	^a measured. June 2014
ATF2 ultra-low β_y^*	25	20 ^b	1	40000	^b using octupoles

Octupole magnets for ATF2

Octupoles will be installed in dispersive and non-dispersive regions with 180° difference of phase advance [8]:

Plan to install OCT1 on a mover with initial tilt of 0.5°

Magnet design and assembly performed at CERN (M. Modena et al.) [9]:

Octupoles air cooled and yokes composed of two halves for mounting simplicity

	G [T/m ³]	tunability	magnetic length [mm]	aperture radius [mm]	ampere-turns per coil [A]	# of turns per coil	I [A]	power max. [W]
OCT1	6820	-90%/+20%	300	52	1800	60	30	152
OCT2	708	-90%/+20%	300	52	180	6	30	15.2

ATF2 two octupoles procurement

STATUS:

Octupoles built by ~March 2016

- 10 + 10 coils were received and tested at CERN in August
- Iron yokes under machining by EDM (electro-erosion) at CERN Main Workshop. They will be available in **November**.
- Still under discussion **alignment procedure details** (CERN Survey is waiting info from KEK colleagues) but the fiducials layout was anyway decided and fixed

ATF octupoles status (M. Modena)

ATF octupoles status (M. Modena)

Half β^* study at ATF2, June 2015

ළි 160 ල 140

120

100

80

60

40

20

0

0

10

- Used 10β_x0.5β_y optics (40mm, 50μm)
- Expected IP vertical beam size: 26 nm
 - after very fine sextupole tuning
 - assuming $\varepsilon_v = 12 \text{ pm}$

 $-\eta_{x} - \eta_{x} - 0.6 - 0.8 -$

β,

QD0FF current scan

$$\beta^* \approx \frac{\varepsilon}{\sigma^2} (\Delta f)^2$$

 $\Delta f = distance from$ nominal IP

0.6 դ [**m]**

0.4

0.2

n

0.2

0.4

Vertical emittance of 14.4 ± 1.1 pm was measured using the OTRs for an estimate of: $\beta_v = 47.3 \pm 4.3 \mu m$ (design: 50 µm)

Beam size tuning in half β^* optics

- The first experience with half β_y^* optics was collected during the December 2014 and April-May-June 2015 runs in ATF2
- Beam size tuning (June 2015) with the linear knobs:
 - IP vertical beam size about 65 nm
 - Far from expected 28.5 nm (assuming measured emittance)
 - Same beam size was measured one day before in $10\beta_x 1\beta_y$ optics (should be easier to operate)
- The source of beam size growth (e.g. wakefields, beam position jitter, IP-BSM performance, non-optimal sextupole correction) has to be identified and mitigated
- Next experiment scheduled for December 2015. Plans: achieve good control over β^* values, IP beam size tuning

Ground motion feed-forward

- Ground motion misaligns quadrupole magnets
 - Unwanted dipole kicks cause increase in emittance
- Ground motion feed-forward is a novel scheme using ground motion sensors to drive correctors

ADVANTAGES

Cheaper than active stabilization systems.

Correct frequencies out of limits for orbit feedback systems.

Ground motion sensors

- 14 Güralp Systems CMG-6T seismometers
- Frequency response: 0.2 100 Hz
- Measure velocity in horizontal and vertical axes

Current setup at ATF2

- Sensor distribution guided by simulation [10]
- Sensor readouts plus synchronization signal recorded with National Instruments PXI system

- PXI system: control chassis containing I/O modules
- Runs real-time LabVIEW

Ground motion at ATF2

Effect of ground motion on orbit

- Simultaneously gather data from ground motion sensors and ATF2 BPMs
- Calculate correlation of each sensor/BPM pair

Factors affecting correlation

Sensor-BPM correlations

Simulating feed-forward

- Fit position at selected BPM as a function of (filtered) sensor position(s)
 - Consider single sensor / five sensor cases

Expected jitter reduction

- Simulate correction by subtracting fit from actual BPM data to give a residual position
- Assumes perfect latency & correction resolution

Feed-forward setup

• Corrector: use FONT stripline kicker(s)

Many thanks to the FONT team, University of Oxford, for the use of their hardware

- Processor: NI CompactRIO FPGA-based system
 - Low feed-forward latency compared to existing PXI hardware

Summary

- Ultra low β* optics
 - Useful for studying the behavior of a machine with chromaticity similar to CLIC
 - Makes beam more sensitive to imperfections but will install a pair of octupoles in March 2016 to mitigate this

Ground motion feed-forward

- Ground motion feed-forward aims to reduce beam jitter caused by dynamic displacement of quads
- High correlation of sensor position and beam motion achieved by mounting sensors directly on quads and high-pass filtering
- Expect ~5% reduction in beam jitter if correcting using just the QD2X sensor and a maximum expected reduction ~15%
- Both studies will continue in December 2015

References

- [1] B. I. Grishanov et al. (ATF2 Collaboration), "ATF2 Proposal",2005.
- [2] K. Kubo et al. (ATF2 Collaboration), "Towards an International Linear Collider: Experiments at ATF2", IPAC 2014.
- [3] S. Kuroda, "ATF2 for final focus test beam for future linear colliders", ICHEP 2014.
- [4] P. Raimondi and A. Seryi, "*Novel Final Focus Design for Future Linear Colliders*", Phys. Rev. Lett. 86, 3779 (2001).
- [5] D. Angal-Kalinin, S. Bai, P. Bambade, H. Braun, J.P. Delahaye, et al., "*Exploring ultra-low beta** *values in ATF2 R*&*D Programme proposal*." 2008, pp.1-6. <in2p3-00308662>.
- [6] E. Marin et al., "*Design and high order optimization of the Accelerator Test Facility lattices*", Phys. Rev. St. Accel. Beams 17, 021002, 2014.
- [7] M. Patecki, R. Tomás, "*Effects of quadrupole fringe fields in final focus systems for linear colliders*", Phys. Rev. St. Accel. Beams 17, 101002 (2014).
- [8] E. Marin et al., "Specifications of the octupole magnets required for the ATF2 ultra-low β lattice", SLAC Technical Note: SLAC-TN-14-019.
- [9] M. Modena, "Update on 2 Octupoles Procurement for ATF2 Final Focus Systems", 18th ATF2 Project meeting 2015.
- [10] Y. Renier, "Detection of ground motion effects on the beam trajectory at ATF2", IPAC12
- [11] C. Collette et al. "Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement", Bull. Seismol. Soc. Am. 102, 1289 (2012)