< □ > < 同 >

The 2D-Oide effect

(http://arxiv.org/abs/1509.05747)

Submitted to PRST-AB as Beam focusing limitation from synchrotron radiation in two dimensions

Oscar BLANCO ^{1,2} Rogelio TOMAS ¹ Philip BAMBADE ²

¹CERN

²LAL

November the 4th, 2015

Oscar BLANCO 2D-Oide CERN, LAL

2D-Oide

Mitigation of the effe

Conclusions

Table of contents

Introduction to Oide effect

2D-Oide

Mitigation of the effect

Conclusions

CERN. LAL

Oide effect

Radiation in a focusing magnet changes the energy of the particle and limits the focusing effect.

Important in strong focusing magnets like the last quad in a linear collider (QD0) before the Interaction Point (IP).

u is the energy of the photon radiated, k is the quadrupole gradient, L is the quad length, L^* is the distance to the IP, and

y, s are the vertical and longitudinal coodinates

Oscar BLANCO	CERN, LAL
2D-Oide	

CERN. LAL

Oide limit

Radiation contributes to the beam size, σ . This sets a limit on the minimum achievable beam size which is independent of energy.

(K. Oide, PhysRevLett.61.1713, 1988)

$$\sigma_{y \min}^{*} = c_2 \left[F(\sqrt{K}L, \sqrt{K}I^{*}) \right]^{\frac{1}{7}} (\epsilon_{Ny})^{\frac{5}{7}}$$

We could remark that F is a function of the distance to the IP and the quad design parameters only.

Lattice	ϵ_N	σ_0	σ_{oide}	σ	σ_{min}
	(nm)	(nm)	(nm)	(nm)	(nm)
CLIC 3 TeV	20	0.70	0.85	1.10	1.00
CLIC 500 GeV	25	2.3	0.08	2.3	1.17
ILC 500 GeV	40	5.7	0.04	5.7	1.85

It is relevant for CLIC 3 TeV!

 $\epsilon_N = \gamma \epsilon$ is the normalized emittance, σ_0 is the linear beam size (no rad), σ_{oide} is the contribution from radiation,

Oscar BLANCO

2D-Oide

Oide in CLIC 3 TeV

Transverse beam profile at the IP from tracking from QD0 input.

Typical mitigation method

To design the quad for the minimum reasonable value F.

This is normally achieved by **enlarging the quad** and reducing the quad strength while keeping the focal distance.

$$\sigma/\sigma_0 = \sqrt{1+\sigma_{
m oide}^2/\sigma_0^2}$$

Red line is the beam size for the minimum focusing strength possible.

Magnets more than 10 m long $\stackrel{+}{\underset{}{\overset{-}{\underset{}}}_{1}}$ do not improve the beam size. The lack of other options, encourage us to review the Oide effect.

Oide and 2D-Oide

Transverse beam profile at the QD0 input.

CERN. LAL

and the horizontal component of the magnet field is neglected.

In 2D-Oide both components are considered (blue arrow, left plot).

CERN. LAL

$$\Delta y = y_{
m rad} - y_{
m no}$$
 rad

We calculate theoretically the difference in vertical position due to the average radiation all along QD0, giving a cubic and a linear component. with respect to y'_0 (the particle angle at the IP).

And the second moment of the vertical displacement:

$$\overline{(\Delta y)^2} = c_3(y_0'^*)^2 \int_0^{\sqrt{k}L} \left(\left[\mathbf{y_0'^*} f_y(\phi) \right]^2 + \left[\mathbf{x_0'^*} f_x(\phi) \right]^2 \right)^{3/2} F_y^2(\phi) d\phi$$

Now the particle displacement is a function of the angles at the IP in x and y a, b, c₃ are constants. f_x , f_y , F_y are part. propagation functions.

CERN. LAL

Tracking

And now we do tracking to compare Oide and 2D-Oide:

- ▶ Oide: beam with small horizontal emittance ($\epsilon_{Nx} = 2 \text{ pm}$), where the horizontal particle position is negligible.
- ► 2D-Oide: beam with the CLIC 3 TeV horizontal emittance $(\epsilon_{Nx} = 660 \text{ nm})$ 40

∆y [nm]

$$\overline{\Delta y} = a(\mathbf{y_0'*})^3 + b(x_0'^*)^2 \mathbf{y_0'*}$$

We assume gaussian distribution of the particles and calculate the expected values...

Oscar BL

2D-Oide

.AL

Compare Tracking, Oide and 2D-Oide (1 of 2) Oide:($\epsilon_{Nx} = 2 \text{ pm}$), 2D-Oide:($\epsilon_{Nx} = 660 \text{ nm}$),

- ► a: There is a clear agreement in the order of magnitud when comparing Oide, 2D-Oide and tracking.
- b ε_{Nx}/(γβ_x): Similar agreement is clear between tracking and 2D-Oide when comparing.Extrangely tracking is much bigger than zero when the horizontal emittance is reduced

	$\overline{\Delta y}$		а	$b \epsilon_{Nx}/(\gamma \beta_x)$		
			$[10^{-11} m]$	$[10^{-11} m]$		
	$\epsilon_{Nx} = 2 \text{ pm}$	Theory	9.0	0		
		Tracking	9.5 ± 0.1	-1.3 ± 0.3		
	$\epsilon_{Nx} = 660 \text{ nm}$	Theory	9.0	6.3		
		Tracking	8.5 ± 0.1	5.4 ± 0.3		
The differ	ences have be	en attribu	ited to lim	itations in tl	he particle	
	tracking	and radia	ation simul	ations.	e> ke> e	Ý
ANCO					CERN	,

(日) (同) (三) (

CERN. LAL

Compare Tracking, Oide and 2D-Oide (2 of 2)

Oide:($\epsilon_{Nx} = 2 \text{ pm}$), 2D-Oide:($\epsilon_{Nx} = 660 \text{ nm}$), Now we compare the effect on the beam size

	$\left\langle \overline{(\Delta y)^2} \right\rangle^{1/2}$	[nm]
$\epsilon_{Nx} = 2 \text{ pm}$	$\sigma_{ m oide}$ $\sigma_{ m 2D-oide}$ Tracking	$\begin{array}{c} 0.87 \\ 0.87 \pm 0.03 \\ 0.92 \end{array}$
$\epsilon_{\it Nx} = 660~{\rm nm}$	$\sigma_{ m 2D-oide}$ Tracking	$\begin{array}{c} 1.02\pm0.03\\ 1.00\end{array}$

17% bigger vertical beam size due to radiation. Which corresponds to 11% larger vertical beam size.

Mitigation possibilities

Most of the contribution to beam size comes from the cubic term

$$\overline{\Delta y} = a(\mathbf{y_0'^*})^3 + b(x_0'^*)^2 y_0'^*$$

In principle lattice could be tuned to correct this component (PhysRevSTAB.17.101002)

For a simple test an octupole (C0) is added to the line at the QD0 exit, giving a kick to the particles.

The β_y/β_y at the QD0 exit is maximum, therefore there will be minimal coupling effect.

2D-Oide

< □ > < 同 >

Image: Image:

CERN. LAL

Simplest mitigation (Octupole)

The octupole strength can be calculated to remove the component *a*.

	k ₃	σ_{x}	σ_y	L _{tot}	L _{peak}
	[m ⁻⁴]	[nm]	[nm]	[10 ³⁴ c	$m^{-2} \cdot s^{-1}$]
NO RAD	0	47.45	0.69	7.7	2.9
RAD	0	47.45	1.18	7.5	2.7
RAD	3900	47.45	1.13	7.4	2.7

4% reduction of the vertical beam size at the IP Negligible or negative effect on luminosity Further improvement could be possible if we tune upstream elements !

Conclusions

- Oide effect limits the minimum beam size due to radiation
 - Relevant for CLIC at 3 TeV
- ▶ The Oide effect considers only the focusing plane. When considering focusing and defocusing planes and additional 11% contribution to beam size appears.
- This is composed by a cubic and linear component in y'.
- One method to mitigate the effect is by adding an octupole. This reduces the vertical beam size at the IP in 4%.
- The effect of the mitigation in luminosity is negligible, however, it might improve if this correction is included in the tuning!

< ロ > < 同 > < 三 > < 三

CERN. LAL