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Oide effect
Radiation in a focusing magnet changes the energy of the particle and
limits the focusing effect.
Important in strong focusing magnets like the last quad in a linear
collider (QD0) before the Interaction Point (IP).
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u is the energy of the photon radiated, k is the quadrupole gradient, L is the quad length, L∗ is the distance to the IP, and

y, s are the vertical and longitudinal coodinates
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Oide limit
Radiation contributes to the beam size, σ. This sets a limit on the
minimum achievable beam size which is independent of energy.

(K. Oide, PhysRevLett.61.1713, 1988)

σ∗y min = c2
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We could remark that F is a function of the distance to the IP and the
quad design parameters only.

Lattice εN σ0 σoide σ σmin

(nm) (nm) (nm) (nm) (nm)
CLIC 3 TeV 20 0.70 0.85 1.10 1.00
CLIC 500 GeV 25 2.3 0.08 2.3 1.17
ILC 500 GeV 40 5.7 0.04 5.7 1.85

It is relevant for CLIC 3 TeV!
εN = γε is the normalized emittance, σ0 is the linear beam size (no rad), σoide is the contribution from radiation,

σ = σ2
0 + σ2

oide . c2 is a constant
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Oide in CLIC 3 TeV
Transverse beam profile at the IP from tracking from QD0 input.
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Typical mitigation method
To design the quad for the minimum reasonable value F .
This is normally achieved by enlarging the quad and reducing the quad
strength while keeping the focal distance.
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Red line is the beam size
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strength possible.

Magnets more than 10 m long

do not improve the beam size.

The lack of other options,

encourage us to review the Oide effect.
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Oide and 2D-Oide

Transverse beam profile at the QD0 input.
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Oide 2D-Oide

In the Oide calculation, only the vertical position is considered (blue arrow, right plot),
and the horizontal component of the magnet field is neglected.
In 2D-Oide both components are considered (blue arrow, left plot).
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∆y = yrad − yno rad

We calculate theoretically the difference in vertical position due to

the average radiation all along QD0, giving a cubic and a linear component.

with respect to y′0 (the particle angle at the IP). IP
y

s

L

l∗

k

no rad
rad

x

s = 0
∆y = a(y′∗0 )3 + b(x ′∗0 )2y′∗0

(∆y)2 = c3(y ′∗0 )2
∫ √kL

0

([
y′∗0 fy (φ)

]2
+
[
x′∗0 fx(φ)

]2)3/2

F 2
y (φ)dφ

And the second moment of the vertical displacement:

Now the particle displacement is a function of the angles at the IP in x and y
a, b, c3 are constants. fx , fy , Fy are part. propagation functions.
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Tracking
And now we do tracking to compare Oide and 2D-Oide:

I Oide: beam with small horizontal emittance (εNx = 2 pm), where
the horizontal particle position is negligible.

I 2D-Oide: beam with the CLIC 3 TeV horizontal emittance
(εNx = 660 nm)

∆y = a(y′∗0 )3 + b(x ′∗0 )2y′∗0
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We assume gaussian distribution

of the particles and calculate

the expected values...
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Compare Tracking, Oide and 2D-Oide (1 of 2)
Oide:(εNx = 2 pm), 2D-Oide:(εNx = 660 nm),

I a: There is a clear agreement in the order of magnitud when
comparing Oide, 2D-Oide and tracking.

I b εNx/(γβx): Similar agreement is clear between tracking and
2D-Oide when comparing.Extrangely tracking is much bigger than
zero when the horizontal emittance is reduced

∆y a b εNx/(γβx )

[10−11 m] [10−11 m]
εNx = 2 pm Theory 9.0 0

Tracking 9.5± 0.1 −1.3± 0.3

εNx = 660 nm Theory 9.0 6.3
Tracking 8.5± 0.1 5.4± 0.3

The differences have been attributed to limitations in the particle
tracking and radiation simulations.
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Compare Tracking, Oide and 2D-Oide (2 of 2)

Oide:(εNx = 2 pm), 2D-Oide:(εNx = 660 nm),
Now we compare the effect on the beam size〈

(∆y)2
〉1/2

[nm]

εNx = 2 pm σoide 0.87
σ2D-oide 0.87± 0.03
Tracking 0.92

εNx = 660 nm σ2D-oide 1.02± 0.03
Tracking 1.00

17% bigger vertical beam size due to radiation.
Which corresponds to 11% larger vertical beam size.
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Mitigation possibilities
Most of the contribution to beam size comes from the cubic term

∆y = a(y′∗0 )3 + b(x ′∗0 )2y ′∗0
In principle lattice could be tuned to correct this component (PhysRevSTAB.17.101002)

For a simple test an octupole (C0) is added to the line at the QD0 exit,
giving a kick to the particles.
The βy/βy at the QD0 exit is maximum, therefore there will be minimal
coupling effect.
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Simplest mitigation (Octupole)

The octupole strength can be calculated to remove the component a.

k3 σx σy Ltot Lpeak
[m−4] [nm] [nm] [1034cm−2· s−1]

NO RAD 0 47.45 0.69 7.7 2.9
RAD 0 47.45 1.18 7.5 2.7
RAD 3900 47.45 1.13 7.4 2.7

4% reduction of the vertical beam size at the IP
Negligible or negative effect on luminosity
Further improvement could be possible if we tune upstream elements !
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Conclusions

I Oide effect limits the minimum beam size due to radiation
I Relevant for CLIC at 3 TeV

I The Oide effect considers only the focusing plane. When considering
focusing and defocusing planes and additional 11% contribution to
beam size appears.

I This is composed by a cubic and linear component in y ′.

I One method to mitigate the effect is by adding an octupole. This
reduces the vertical beam size at the IP in 4%.

I The effect of the mitigation in luminosity is negligible, however, it
might improve if this correction is included in the tuning!
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