Higgs and Dark Photon Searches

Matti Heikinheimo

Helsinki Institute of Physics [1503.05836 [hep-ph]], Sanjoy Biswas, Emidio Gabrielli, M. H., Barbara Mele

LCWS15, November, 2015

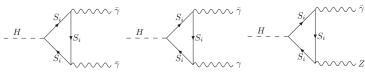
Contents

1 Introduction

 $e^+e^- o H\bar{\gamma}$

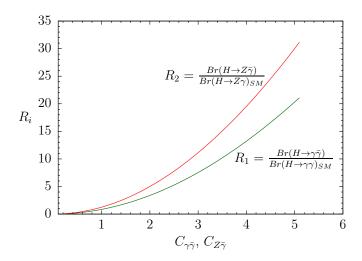
Dark Photons

- Dark photons appear in several beyond the Standard Model physics scenarios, where a new U(1) gauge group is added to the SM.
- Massive dark photons can be dark matter candidates, while massless dark photons can appear in models of self-interacting dark matter. (Cusp-vs-core, missing satellites.)
- Unbroken U(1) results in a massless dark photon.
 Motivated e.g. in a model for radiative origin of the SM Yukawa couplings. [arXiv:1310.1090 [hep-ph]]


Coupling to the SM

- Dark photons can couple to the SM particles via the kinetic mixing operator $F'_{\mu\nu}F^{\mu\nu}$, or via loop-induced dimension 5 operators.
- The kinetic mixing of massless Dark Photons can be transformed away by field redefinitions. Generally this results in millicharges for the particles initially charged under the hidden U(1).
- If the tree-level kinetic mixing is set to zero, the possible loop-induced mixing vanishes on-shell.
- If there are particles charged under both the hidden and the SM U(1), there will be loop-induced couplings between the dark photon and the SM.

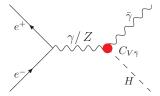
Coupling to the SM


Couplings to the Higgs can be generated via messenger particles charged under $U(1)' \times U(1)$.

Similar diagrams will also contribute to the $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$ decay widths. Effective Lagrangian:

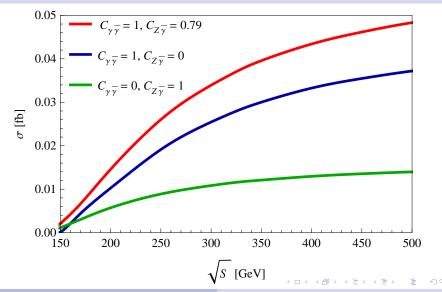
$$\mathcal{L}_{\mathrm{DP_H}} = \frac{\alpha}{\pi} \left(\frac{C_{\gamma\bar{\gamma}}}{\mathbf{v}} \gamma^{\mu\nu} \bar{\gamma}_{\mu\nu} H + \frac{C_{Z\bar{\gamma}}}{\mathbf{v}} Z^{\mu\nu} \bar{\gamma}_{\mu\nu} H + \frac{C_{\bar{\gamma}\bar{\gamma}}}{\mathbf{v}} \bar{\gamma}^{\mu\nu} \bar{\gamma}_{\mu\nu} H \right)$$

Higgs to New Physics Branching Ratios


Contents

1 Introduction

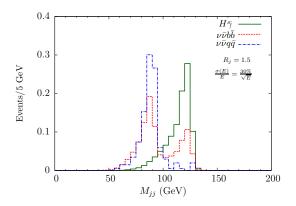
2 $e^+e^- o H\bar{\gamma}$


Higgs + Dark Photon production

The process $e^+e^- \to H\bar{\gamma}$ is generated by the *s*-channel diagram:

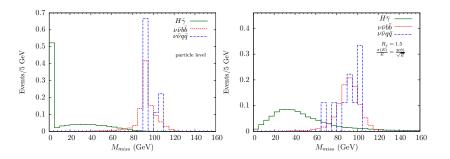
We look at the final state $H \to b\bar{b}$, so that the signal is two b-jets plus missing energy.

Inclusive Production Cross Section

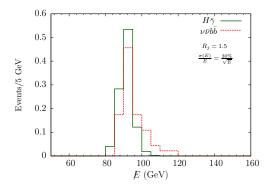

Event Selection

Initial event selection:

- Two *b*-jets with $p_T > 20$ GeV, $|\eta| < 2.5$, and $\Delta R(bb) > 0.4$
- Missing energy # > 40 GeV.


The main SM background is the $\nu\bar{\nu}b\bar{b}$ production, including the on shell $ZH \to \nu\bar{\nu}b\bar{b}$. There is also a subdominant contribution from $\nu\bar{\nu}q\bar{q}$, where both light jets are misstagged as b-jets. We assume 80% b-tagging efficiency and a miss-tag rate of 10^{-2} for light jets.

Jet Pair Invariant Mass Distribution

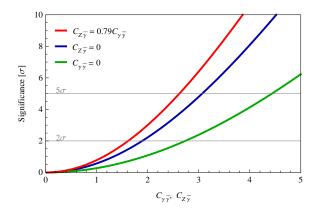


We require M_{jj} within 10% of the peak value of the simulated signal events. The distributions shown are normalized to one.

Missing Mass Distribution

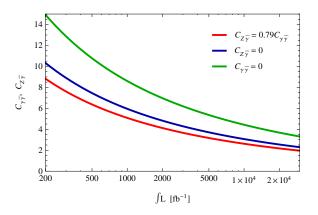
Missing Energy Distribution

Missing energy distributions after applying the cuts on M_{jj} and $M_{\rm miss}$. We require 40 GeV $< \not \! E <$ 100 GeV.



Signal and Backgrounds After Cuts

Process	Cross section (fb)	Acceptance (%)
$H\bar{\gamma}$ $(C_{Z\bar{\gamma}}=0)$	$10.1 imes 10^{-3} \ C_{\gamma \bar{\gamma}}^2$	17.3
$Har{\gamma}$ $(C_{\gammaar{\gamma}}=0)$	$4.8 \times 10^{-3} \ C_{Z\bar{\gamma}}^2$	17.3
$H\bar{\gamma}$ $(C_{Z\bar{\gamma}}=0.79\ C_{\gamma\bar{\gamma}})$	$13.8 \times 10^{-3} C_{\gamma\bar{\gamma}}^2$	17.3
SM ν̄ῡb̄b̄	115.	0.08


The cross section and acceptance after the cuts for the signal and SM background. The $\nu\bar{\nu}q\bar{q}$ background is negligible.

Discovery Reach

The projected sensitivity for the effective couplings for 10^4 fb^{-1} at a 240 GeV e^+e^- collider.

Discovery Reach

The projected 5σ -sensitivity for the effective couplings for a 240 GeV e^+e^- collider.

Conclusions

- The Higgs boson can act as a portal to a hidden sector responsible for e.g. dark matter, flavor hierarchy, EWSB etc.
- Production of a SM Higgs in association with a dark photon is a signature of such scenario.
- The effective coupling $C_{\gamma\bar{\gamma}}$ can be probed down to values corresponding to $BR(H \to \gamma\bar{\gamma}) \sim \mathcal{O}(1\%)$ in future e^+e^- colliders.