Calorimetry/Muon Summary

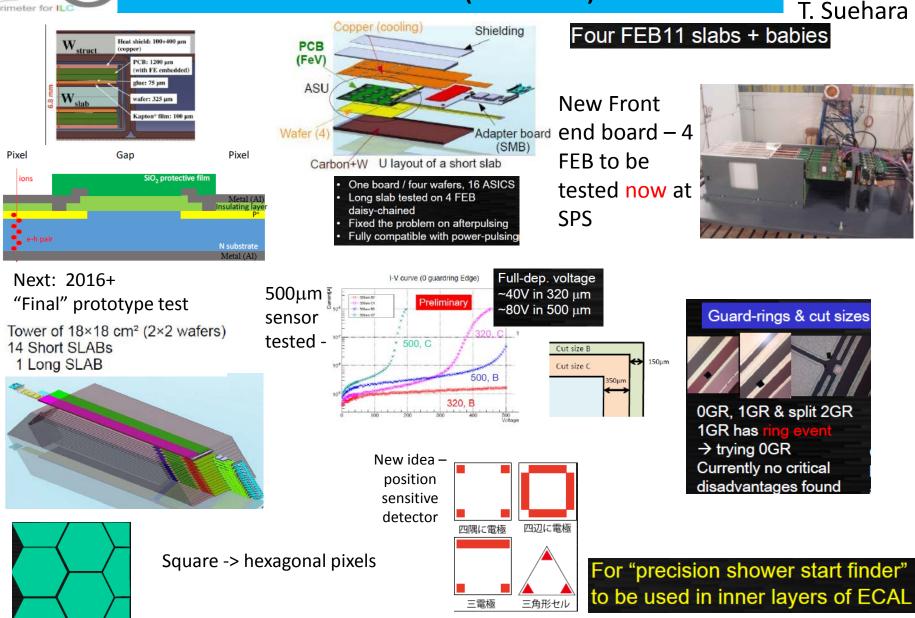
Andy White University of Texas at Arlington

LCWS 2015, Whistler

Calorimetry/Muon topics covered at this meeting

- Electromagnetic calorimetry
 - Silicon/tungsten ECal
 - Scintillator strip Ecal/HCal
 - Scintillator strip Calorimeter in PFA

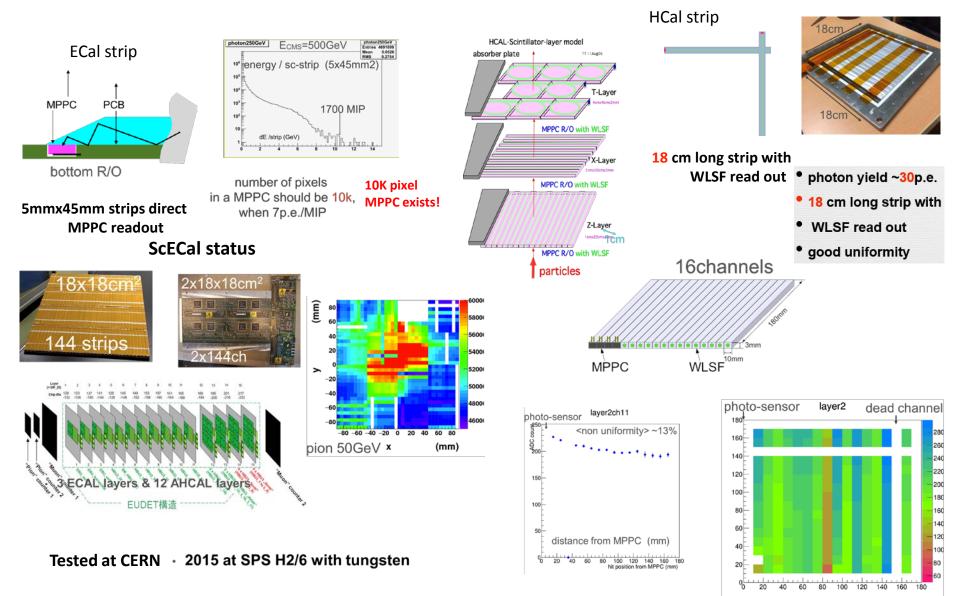
- Hadronic calorimetry


- Analog HCal/SiPMs
- W-AHCAL Shower development
- SiPM Gain studies
- Semi-digital Hcal
- SDHCAL/Arbor PFA

- Beam/Luminosity calorimetry

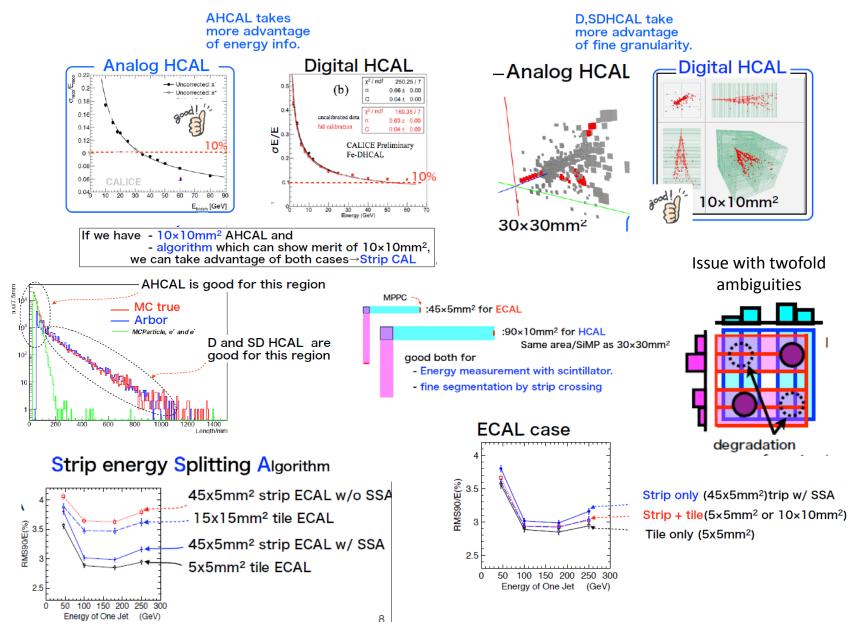
- Radiation damage studies
- LumiCal beam tests
- Ultra compact LumiCal
- Dual readout calorimetry ADRIANO
- ADRIANO Performance
- Scintillator-based muon system

SiW ECal (CALICE)



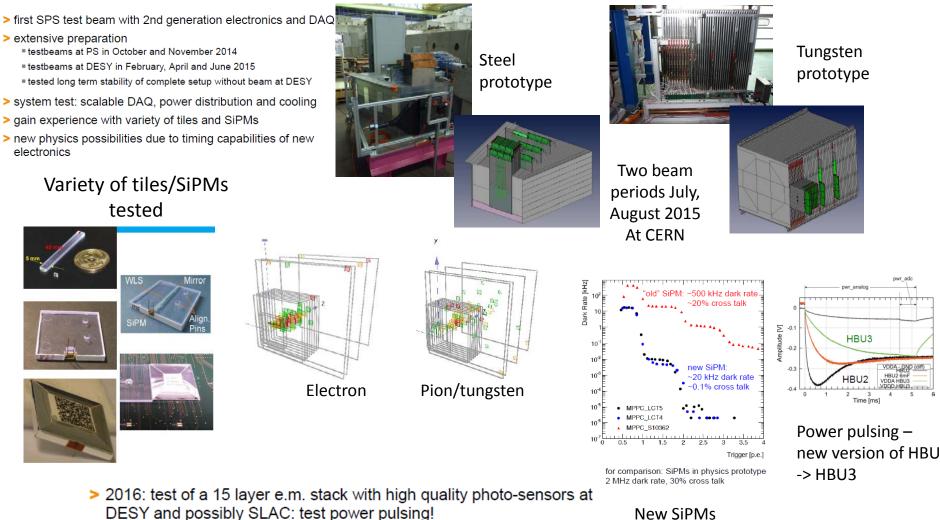
28.8% more area per wafer \rightarrow 22.4% less wafers needed

Strip Scintillator ECal and HCal


T. Takeshita

Strip Scintillator CAL in PFA

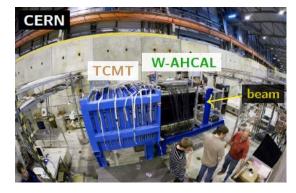
K. Kotera



AHCAL – Technical Prototype

K. Kruger

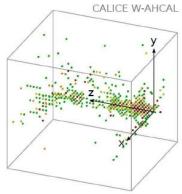
AHCAL Testbeams at SPS in 2015

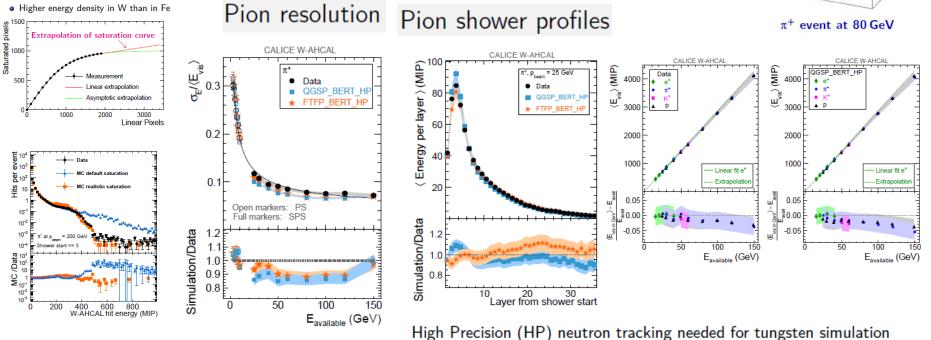


- > 2017: construction of a big hadronic prototype
- > 2018: test with hadrons at CERN

New SiPMs

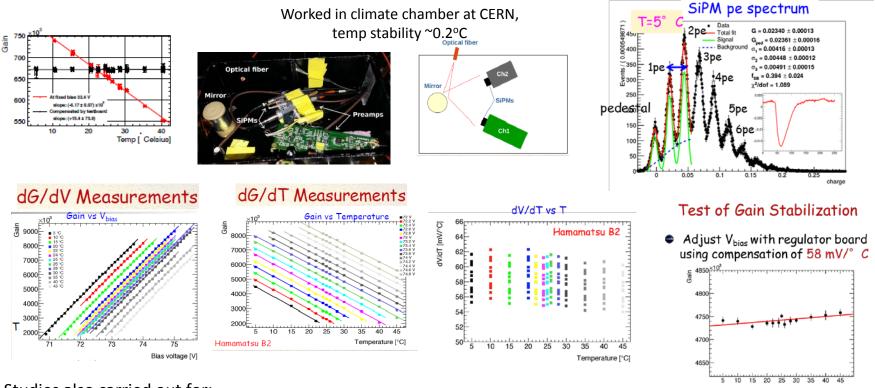
Shower development: CALICE W-AHCAL


F. Sefkow, E. Sicking



Test beam experiments at CERN SPS in 2011

- W-AHCAL (38 layers $\triangleq 5 \lambda_{I}$) (+ TCMT $\triangleq 5 \lambda_{I}$)
- $10 \le p_{\mathsf{beam}} \le 300 \, \mathsf{GeV}$
- e[±] beam/ mixed beam μ^{\pm} , π^{\pm} , K[±], p
- Focus of study: Comparison between data and Geant4 9.6.p02 for tungsten HCAL


• FTFP_BERT_HP better than QGSP_BERT_HP for all observables except Evis

SiPM Gain Studies

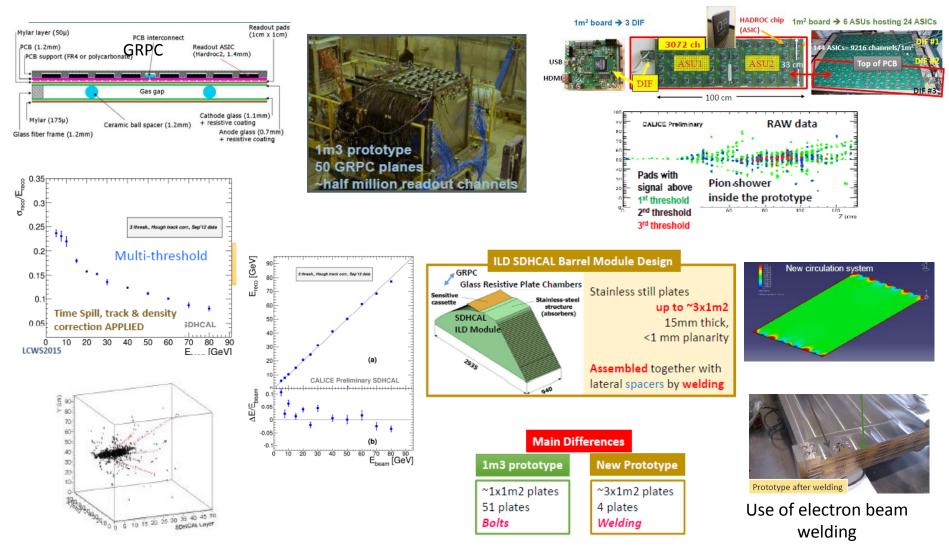
• The gain of SiPMs increases with V_{bias} and decreases with T

 For stable operation, the gain needs to be kept constant, especially in large detectors such as an ILC/CLIC analog hadron calorimeter with 10⁶ channels The method is to adjust V_{bias} when T changes
 → this requires knowledge of dV/dT that can be determined from measurements of dG/dV & dG/dT

dV/dT=(58.15±0.10_{stat}±0.51_{sys}) mV/°C

Gain is uniform in 5° C-45° C T range
 →non-uniformity is +0.1%

Studies also carried out for:


- Hamamatsu LCT4 (with trenches to suppress xtalk)
- KETEK SiPM W12

Semi Digital HCal

M.C Fouz

Readout 1m2 GRPC prototypes (Electronics embedded in the detector)

A new prototype with less planes but bigger chambers will be build. The prototype should be closer to the ILD final design

Arbor PFA - SDHCAL

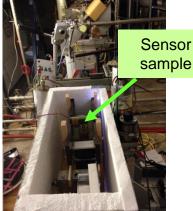
Provides a dedicated API for Arbor algorithms built on top of PandoraSDK APIs. Particle Flow Algorithm based on hadronic shower tree-like topology. Match the PandoraPFA package structure : PandoraSDK : toolkit for generic PFA development PandoraMonitoring (optionnal) : ROOT Eve event display designed for PFA ArborContent : the algorithm contents (connector seeding, cleaning, tree associations ...) MarlinArbor : Marlin processor implementation for ArborContent Incomina charged narticle Erec [GeV] ArborPFA - CERN SPS Aug 2012 ⁸⁰È No PFA - CERN SPS Aug 2012 (6) Track-to-tree association Association between tracks and trees performed 1 **Overlaid showers** with simple criteria : 40 30 20 10 Distance between a tree seed and track 0.9 0.8 extrapolation to the calorimeter front face. Track momentum - tree energy comparison 2 0.7 CALICE SDHCAL Preliminary Handling of special cases as early interactions 0.6 CALICE SDHCAL Preliminary 0 0.4 J_10.05 0.05 Charged particle energy = 10 GeV Charged particle energy = 20 GeV Charged particle energy = 30 GeV Charged particle energy = 40 GeV Reconstruction inputs Charged particle energy = 50 GeV • Data : CERN SPS 2012 - August-September 25 20 Ebeam [GeV] Distance between showers [cm] Particles : h[±] Energies : [10; 80] GeV by steps of 10 GeV "Fake" track generated : Conclusion p
 = (0, 0, E_{beam})
 Entry point e : barycentre (b_x, b_y) of hits in the 5 Particle flow algorithm development based hadronic shower tree topology for the SDHCAL first layers $\rightarrow \vec{e} = (b_x, b_y, z_{front})$ prototype • No magnetic field $(\vec{B} = \vec{0} T)$ Performance extraction for single particle - OK Performance extraction for two overlaid particles - OK till 5 cm

adequate?

BeamCal – radiation damage

Aedo

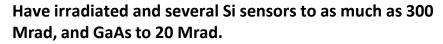
B. Schumm


Motivation

BeamCal maximum dose ~100 MRad/yr
BeamCal is sizable: ~2 m² of sensors.
A number of ongoing studies with novel sensors:
GaAs, Sapphire, SiC
→ Are these radiation tolerant?
→ Might mainstream Si sensors in fact be

Results from the SLAC ESTB T-506 Irradiation Study

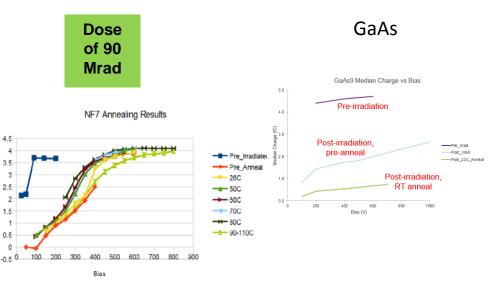
EAM SWITCHYARD


Embed sample sensors in tungsten:

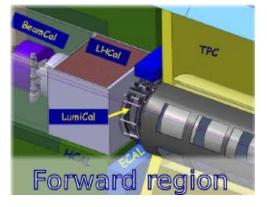
"Pre-radiator" (followed by ~50 cm air gap) spreads shower a bit before photonic component is generated

"Post-radiator" brings shower to maximum just before sensor

"Backstop" absorbs remaining power immediately downstream of sensor

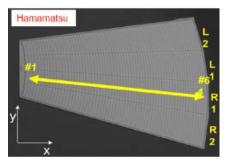

→ Realistic EM and hadronic doses in sensor, calibrated to EM dose

Si sensors show fair charge collection after ~3 years irradiation; of order 0.05W/cm² to bias


GaAs charge loss significant at 6 Mrad and substantial at 21 Mrad. Significant loss from mild annealing. Explore further annealing...

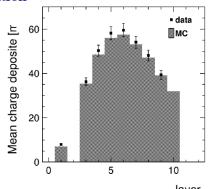
SiC sensor irradiated to 100 Mrad; awaiting I-V and CCE study

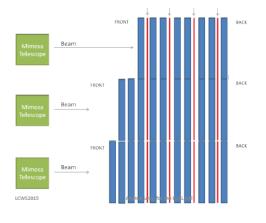
LumiCal – beam tests

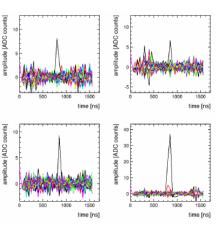


Optimisation of the design of the very forward region of LC detector

- Precision luminosity measurement
- Fast feedback and beam tuning
- Detector hermeticity






Test and demonstration, for the first time, a multi-plane operation of the prototype forward detector system.

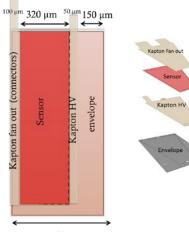
Runs/ events	e ⁻ & μ ⁻	Hadron	
Configuration 1	75 / 30k	4/20k	
Configuration 2	60/36k	1/2k	
Configuration 3	55/45k	8/38k	

layer

to do:

- Molière radius...
- · Compare hadron, muon and electron runs.
- Apply clustering and reconstruct showers for spatial and angular resolution.

•

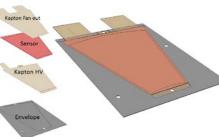

Ultra compact LumiCal

Y. Benhammou

Current LumiCal modules are based on 3.5 mm thick PCB : compactness is an essential requirement to provide small Molière radius/accurate shower position reconstruction.

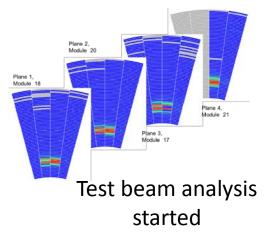
In current LumiCal conceptual design the space between absorbers is 1 mm!

Easy to mount on tungsten planes




650 µm

Readout whole sensor (256 pads) with APV



Carbon fiber chosen for mechanical support

DESY Test Beam

4 planes with thin sensor scotched on tungsten FEB : APV chip based DAQ : SRS system, designed by RD51 collaboration. Silicon telescope : 6 planes with MIMOSA chip

Module 18 tests @ CERN

Dual Readout Calorimetry (ADRIANO)

ADRIANO 2014A

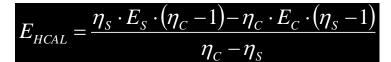
more than adequate for 25-30%/sqrt(E) calorimetry

523 pe/GeV

354 pe/GeV

Scintillating and Čerenkov light in OPTICALLY

SEPARATED MEDIA: ->non-homogeneous detector


Use the absorber as Čerenkov component of dualreadout

Use scintillating fibers for the second component Control the scintillation/Čerenkov with appropriate pitch between fibers

Use glass for Cerenkov component – WLS fiber readout

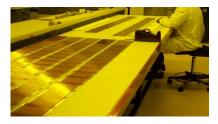
Scintillation L.Y.

Čerenkov L.Y.

2011 – Series of prototypes tested at FTBF

ADRIANO 2014B

256 pe/GeV


338 pe/GeV

C. Gatto

2015 Program: ADRIANO for ILC (SiD)

2014 -

example of 23 groove

prototype

Scifi ribbon built on 100% cotton paper (no acid)

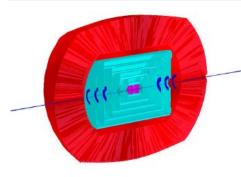
Grooved lead glass slices

Nov. 2015 test Beam at Fermilab

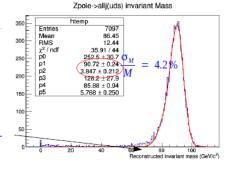
T1015 2016-2017 program

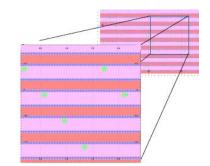
- <u>Čerenkov</u> light yield already exceeded requirements for ILC and for High Intensity experiments
- Next big challenge is to find a faster construction technique to reduce the construction costs
- Rolled glass appears to be the most promising
- Once the technique is in place, two new detectors will be built

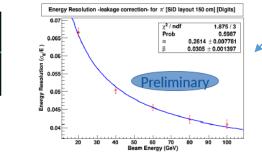
ADRIANO – Performance simulations


A. Mazzacane

MI7

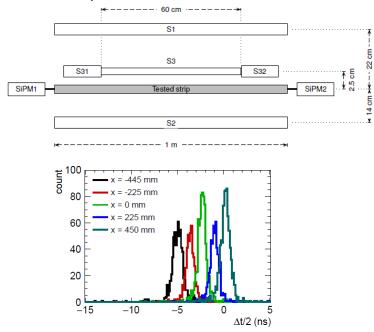

WLS

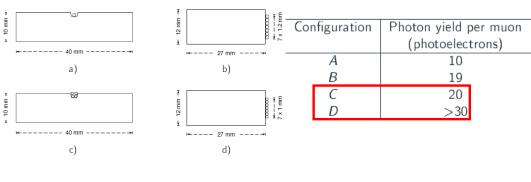

ADRIANO for Sid Details (ilcroot simulation)

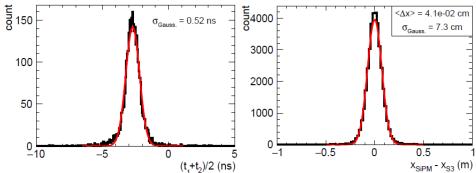

ADRIANO

- Lead glass + scintillating fibers
- ~1.4° tower aperture angle
- ~ 123 cm depth
- ~ 5.5 λ_{int} depth
 >70 X_o depth
- Fully projective geometry
- Azimuth coverage
- down to ~2.8°
- Barrel: 16384 towers
- Endcaps: 7450 towers

Add Pb layers to reduce λ_{int}


BARREL	Technology	Inner radius	Outer radius	Z max
Vertex	Silicon pixels	3	12.9	6.25
Tracker	Silicon pixels	19.5	126.5	163
ADRIANO Calorimeter	Dual Readout	151	274	336.5
Solenoid	5 Tesla	350 - 600	400 - 650	600 - 720
Muon	Drift tube	400	565	600
ENDCAP	Technology	Inner z	Outer z	Outer radius
Vertex	Silicon pixels	7.4	21.7	18.7
Tracker	Silicon pixels	28.1	169.7	129.4
ADRIANO Calorimeter	Dual Readout	151	336	238


Muon system – position resolution


S. Lukic

Motivation

- Few tests so far of possible muon-system sensors for future colliders
- Instrumented area very large and difficult to reach for maintenance a reliable and economical solution would be of great advantage
- \bullet Long scintillator strips (up to ${\sim}3$ m) with SiPM readout interesting for reliability, reasonable construction and operation costs and relatively low number of readout channels
- Measurement of hit position along the strip offers a possibility to resolve multiple hits and limit position uncertainty

Conf.	side		$\sigma_{\scriptscriptstyle X}$ (setup 1)	σ_{x} (setup 2)	σ_t	<i>v</i> *
	#	(photoel.)	(cm)	(cm)	(ns)	(cm/ns)
C	1	21	14.8	14.8	0.91	18.1
C	2	20	14.0	14.0	0.91	10.1
D	1	31	7.7	7.3	0.52	17.2
υ	2	36	1.1	1.5	0.52	11.2

Test setup with reference counter/PMTs