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Outlines

• Intensive work on-going to re-optimise HCAL 

• New version of Pandora shows better resolution 

• Impact of energy reconstruction

In this talk: 

• Effect of boundary regions in support structure 

• Implementation of software compensation into Pandora 

• Outlook: HCAL granularity revised

• Discussion about overall size of ILD and cost 

• HCAL cell sizes, HCAL thickness,  

        different granularities @ different depth 

• Proof of design (absorber structure) in term of mechanics and physics
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Study effect of iron structure  
                            on energy reconstruction in (r,phi)
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Effect of supporting structure (r,phi) plane

ILD-AHCAL view (r,phi)

• Highly symmetric structure: 16 

sectors of identified shape, but 

pointing cracks (filled with steel) 

• Can be made non-pointing, but less 

simple construction 

• Question: How big is the effect?
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Simulation at supporting structure and neighbouring areaOverview of ILD-AHCAL

‣ AHCAL Barrel and Endcaps

- Iron support between stave and module

- Iron support in the middle of stave
7

• Shooting muon parallel to iron support in 

2mm step to check boundary modelling 

   (0-30mm range) 

• At X>7mm (=10mm/2 + 2mm) 

muon should leave hits on 48 layers 

Iron support (10mm)
Air-gap between iron and cassette (2mm)
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Overview of ILD-AHCAL

‣ AHCAL Barrel and Endcaps

- Iron support between stave and module

- Iron support in the middle of stave
7

• Shooting Kaon0L in 5 different 

directions: 

• Avoid iron support at z = 0 

• Direction 1 and 5 correspond to 

iron support between modules 

• Compare with other geometry 

designs to estimate the effect

Effect of supporting structure (r,phi) plane

6H.L.Tran - ILD collaboration meeting - LCWS2015



• Reconstructed energy comparison of 3 geometries: 

• AHCAL geometry 

• Ideal AHCAL geometry w/o iron and air gap in Phi 

• SDHCAL geometry 

➢ Clear loss of energy response and resolution due to iron 

crack for AHCAL geometry
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Compare AHCAL and SDHCAL geometries
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20% resolution
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Compare AHCAL and SDHCAL geometries

1ᴼ

• Reconstructed energy comparison of 3 geometries: 

• AHCAL geometry 

• Ideal AHCAL geometry w/o iron and air gap in Phi 

• SDHCAL geometry 

➢ Clear loss of energy response and resolution due to iron 

crack for AHCAL geometry
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Standard geometry

No iron no airgap

• Cut on Theta to avoid iron support at z = 0 and 

barrel-endcap gap 

• Look at energy distribution integrated over all phi: 

• Standard geometry 

• Standard geometry w/o iron and air gap in Phi

For single particle

Fit Gaus90 
Mean:   50.6938 
Sigma:  5.07267 
Res(Gaus90) = 10%

Mean:   50.7438 
Sigma:  5.15704 
Res(Gaus90) = 10.2 %

Average effect of supporting structure (r,phi) plane
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Standard geometry

No iron no airgap

For single particle
➢ Effect of iron support on energy 

reconstruction is very small when 

integrating over all phi 

• Can be further mitigated by dead 
material correction 

• Probably not sufficient to motivate a 

design modification
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Average effect of supporting structure (r,phi) plane

• Cut on Theta to avoid iron support at z = 0 and 

barrel-endcap gap 

• Look at energy distribution integrated over all phi: 

• Standard geometry 

• Standard geometry w/o iron and air gap in Phi
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Study effect of iron structure  
                            on energy reconstruction in (r,theta)
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➢  Clear loss of energy response and resolution at central iron plate and in transition 

region between barrel and endcap

Effect of supporting structure (r,theta) plane
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Effect of supporting structure - Theta dependence

Kaon0L 50 GeV
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1ᴼ steps in these regions

➢  Clear loss of energy response and resolution at central iron plate and in transition 

region between barrel and endcap
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➢Middle stave iron support seems to have stronger effect on energy reconstruction. 

Possible improvements: 

• Cluster’s energy correction as a function of theta 

• Or: Asymmetric design: middle stave iron support is not anymore “middle”

Effect of supporting structure (r,theta) plane
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phi at 11.25ᴼ 
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What happens if the middle stave is not anymore “middle”?

IP at 0 mm180360

AHCAL 
Barrel

15

• In principle barrel structure could be made asymmetric to avoid pointing crack 

• In simulation, easier to move interaction point (IP) instead 

• Move IP by 180 and 360 mm (corresponding to half and one HBU in current 

design of AHCAL)
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What happens if the middle stave is not anymore “middle”?
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• Moving the crack away from z = 0 improves 

significantly energy reconstruction when 

particle shot towards crack  

• Over all effect larger than for phi crack but 

still small 

• Can be mitigated with dead material 

correction  

• Discontinuity at z = 0 in TPC too  

➢ Need overall ILD approach
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Cell Size Optimisation  
& Software Compensation
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• Dependence of jet energy resolution on 

HCAL cell size apparently reduced 

compared to results from LoI: 

• HCAL cell energy truncation degrades 

resolution at high energy for higher cell 

size  

• But: improve energy resolution at 

smaller cell sizes 

➢  Idea of cell energy truncation mimics    

      software compensation  

➢  Software compensation can do better  

      and must be applied properly

© Steven
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Motivations for Software Compensation
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• ILD calorimeters are non-compensating:  

• Software compensation equalises 

electromagnetic and hadronic response 

• Software compensation applied to testbeam 

data from physics prototype: 

• Improvement of hadronic energy 

resolution by 20% for single hadrons  

from 10 to 80 GeV

e

h
> 1

[arXiv: 1207.4210v2]
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Software Compensation 

!(⇢) = p1.exp(p2.⇢) + p3

p1, p2, p3

�2

�2 =
X

events

(ESC � Ebeam)2

⇢

• Implementation:
• Electromagnetic showers denser than hadronic showers —> energy of hits inside 

electromagnetic sub-showers typically are higher compared to hits inside hadronic 
sub-showers 

        —> Applying different weights for hits of different energy densities 

• Weight defined as:  

where    is hit energy density,                   are beam energy dependent parameters 

• Energy of cluster then computed in software compensation method as: 

• Weights determined through minimising a      function: 

• In following slides: Results on standard ILD detector (with 3x3 cm2 AHCAL)

ESC =
X

hits

EECAL +
X

hits

(EHCAL.!(⇢)
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Hit Energy Density and Weights

Work in progress

Kaon0L + neutrons @50 GeV
HCAL hit energy density

Work in progress

Samples:
• Kaon0L and neutrons from 10 to 95 GeV generated 

from IP, targeted only to barrel part 
• Select only events with 1 cluster  

• Events where hadronic showers started already 
in EM calorimeter: only HCAL hits are weighted 

• Cluster with no hit in muon chamber
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Weight determination:
• Through       minimisation 
• For each beam energy weights are defined with 

three parameters                   given by  

• For each of                 obtain 10 values at 10 

energies ➢ fit as function of energy

�2

!(⇢) = p1.exp(p2.⇢) + p3

p1, p2, p3

p1, p2, p3

�2

H.L.Tran - ILD collaboration meeting - LCWS2015



Weight parameters
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Fitting                  provides 

continuous energy dependence 

➢ For any particle’s energy a 

weight can be assigned

p1, p2, p3
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Implementation into Pandora

50 GeV Kaon0L
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Particle Flow Object

Software Compensation

Work in progress

• Beam energy now unknown 
• Only initial estimation of cluster’s energy used for determination of weights 
• Apply to set of Kaon0L and neutron samples from 10 to 95 GeV
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• Improvement of mean reconstructed 

energy  
• RMS significantly reduced
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Work in progress

Single Particle Energy Reconstruction

24

• Improves linearity in whole range

• Improves resolution by ~20% (similar to 

results obtained for physics prototype)
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Single Particle Energy Reconstruction

Work in progress
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• Testbeam results reproduced 
• Overall slightly worse because 

of missing tail catcher 

• Improves linearity in whole range

• Improves resolution by ~20% (similar to 

results obtained for physics prototype)
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Jet Energy Resolution

• Software compensation applied for jets

• Only for neutral hadrons, after clustering step 

• Only hits in HCAL are weighted as explained previously

• Reconstructed energy distribution closer to 

simulated energy and width of distribution 

smaller

• Improves jet energy resolution in whole range
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3⇥ 3 cm2

H.L.Tran - ILD collaboration meeting - LCWS2015



 [GeV]jetE
50 100 150 200 250

) [
%

]
j

(E
90

)/M
ea

n
j

(E
90

R
M

S

2

2.5

3

3.5

4

4.5

5

PFO

PFO + Software compensation

 [GeV]jetE
50 100 150 200 250

) [
%

]
j

(E
90

)/M
ea

n
j

(E
90

R
M

S

2

2.5

3

3.5

4

4.5

5

PFO

PFO + Software compensation

 [GeV]jetE
50 100 150 200 250

) [
%

]
j

(E
90

)/M
ea

n
j

(E
90

R
M

S

2

2.5

3

3.5

4

4.5

5

PFO

PFO + Software compensation

Jet Energy Resolution for Different Cell Sizes

27

• For similar cell sizes still expect improvement using weights defined with                                     3⇥ 3 cm2

• Proper weights to be done, especially for very small or very large granularities   
• SC could also help at re-clustering stage of Pandora (to be tried)

2⇥ 2 cm2 4⇥ 4 cm2 5⇥ 5 cm2
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Software Compensation and Semi-digital Reconstruction
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↵⇥ 1 = ↵ ⇤ Ei

Ei
= ! ⇤ Ei

• For semi-digital reconstruction is particularly successful at low energies
• In principle hit counting corresponds to weighting hits with 1/E

• Both reconstruction methods 

in same formalism

• Understand differences and 

learn from each other
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Thesis work in progress 
Coralie Neubuesser (DESY)



Outlook

• Look at jet energy resolution as a function of number of channels

• Plot shows that 3x3 cm2 cell size is still a very reasonable choice with latest Pandora

• Software compensation to be applied

Towards cost optimisation
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© Steven

Latest results from Steven 
To be updated with 
software compensation



Different granularities at different depth of HCAL
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• Framework implemented 
• Effects to be understood

From top to bottom expect 
improvement of JER
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Summary & Outlook

• Impact of boundary regions in absorber structure: 

• Effects of crack regions in (r,phi) in single particle reconstruction are small 

• Somewhat larger effect of crack at theta = 90 degree  

  ➢ Dead material correction to be developed 

• Software compensation and cell size optimisation: 

• Software compensation implemented in Pandora 

• Improves single particle and jet energy resolution 

• Weight determination for different granularities to be done 

• Final goal: HCAL cell size and sampling optimisation (3D granularity) as a function 

of depth and for different detector radii 

• Many thanks to Frank, Miro, Steve, John for the precious discussions and advices!
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Back-up slides
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Number of hits
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14.5 mm

Shooting muon at from position 
with x = 10 mm (4 mm from the 
iron support) gives hits in each 
layer at I = 0

However X coordinate of hits differ 
Closest points at 14.5 mm, excluding 
iron+air-gap it is 7.5 mm —> cell 
has size of 15 mm.

Simulation at supporting structure and neighbouring area



Outlook - Using my numbers

• Look at jet energy resolution as a function of number of channels

• Plot shows clear preference for 3x3 cm2 cell size

• Software compensation to be applied
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Towards cost optimisation
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