The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup

Separation of nearby hadronic showers using ArborPFA [CAN-054] LCWS 2015 Whistler, Canada

Eté Rémi

Université Claude Bernard Lyon 1 Institut de Physique Nucléaire de Lyon

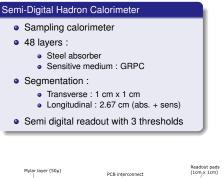
November 4, 2015

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
Outline				

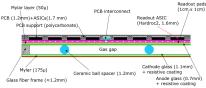
The CALICE SDHCAL prototype

The Arbor Particle Flow Algorithm

Algorithm performances

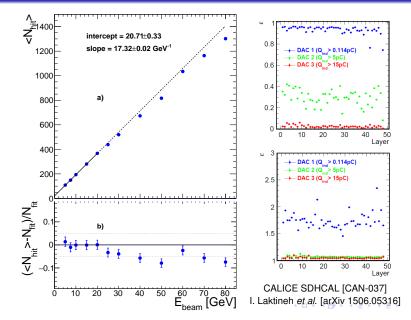

- Single particle performances
- Overlaid particles performances

Conclusion and roadmap


CALICE Preliminary

< (cm

The CALICE SDHCAL prototype Description



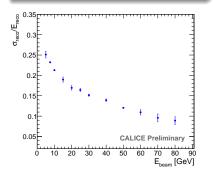
3/26

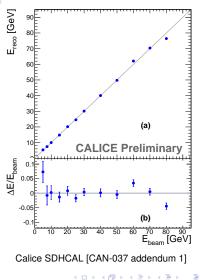
Algorithm performance

The CALICE SDHCAL prototype

4/26

Algorithm performances


The CALICE SDHCAL prototype


Energy reconstruction

$$E = \alpha(\textit{NHit}) \cdot \textit{N}_1 + \beta(\textit{NHit}) \cdot \textit{N}_2 + \gamma(\textit{NHit}) \cdot \textit{N}_3 \ (1)$$

avec :

- $\alpha(\textit{NHit}) = \alpha_1 + \alpha_2 \cdot \textit{NHit} + \alpha_3 \cdot \textit{NHit}^2$ (2)
- $\beta(\textit{NHit}) = \beta_1 + \beta_2 \cdot \textit{NHit} + \beta_3 \cdot \textit{NHit}^2 \tag{3}$
- $\gamma(\textit{NHit}) = \gamma_1 + \gamma_2 \cdot \textit{NHit} + \gamma_3 \cdot \textit{NHit}^2 \qquad (4)$

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
ArborPFA Software package				

PandoraPFA structure (arXiv phys.ins-det/1506.05348)

- PandoraSDK : toolkit for generic PFA development
- PandoraMonitoring (optionnal) : ROOT Eve event display designed for PFA
- LCContent : the algorithm contents (cone clustering, pandora associations, etc ...)
- MarlinPandora : Marlin processor implementation for LCContent

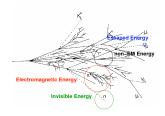
Current version of ArborPFA designed for CALICE SDHCAL. Version of this study : v01-04-00 (https://github.com/SDHCAL/ArborPFA.git) Provides a dedicated API for Arbor algorithms built on top of PandoraSDK APIs.

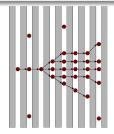
ArborPFA package forseen structure

Version v02-00-00 Hosted at https://github.com/**rete**/ArborPFA.git Full detector purpose Match the PandoraPFA package structure :

- PandoraSDK : toolkit for generic PFA development
- PandoraMonitoring (optionnal) : ROOT Eve event display designed for PFA
- ArborContent : the algorithm contents (connector seeding, cleaning, tree associations ...)
- MarlinArbor : Marlin processor implementation for ArborContent

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
ArborPFA Principle				

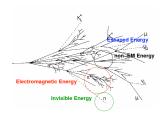

Principle

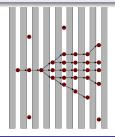

Particle Flow Algorithm based on hadronic shower tree-like topology.

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup

Principle

Particle Flow Algorithm based on hadronic shower tree-like topology.





The CALICE SD	HCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
ArborPI Principle	-A				

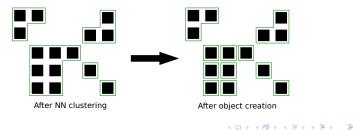
Principle

Particle Flow Algorithm based on hadronic shower tree-like topology.

Some definitions

- Object : Node linked by one or many connector(s) (+ seeds and leaves)
- Connector : Oriented link. Links two objects
- Flow direction : Connector orientation, backward or forward
- Tree : Set of objects linked by connectors. For each object :
 - 0 or 1 backward connector
 - 0 or many forward connector(s)
 - \rightarrow Implies a unique tree structure solution (1 seed per tree)

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
ArborPFA The algorithms				


① Object creation

Create objects, ready to be connected.

- Nearest Neigbours clustering in each layer
- If cluster size <= 4, cluster = 1 object</p>
- If cluster > 4, each cluster hit = 1 object

Allows to :

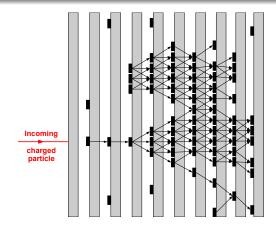
- overcome the track hit multiplicity in gaseous calorimeters
- $\bullet\,$ decrease the size of the problem. NHit \rightarrow NObject (< NHit)
- accelerate the connection procedure

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup

Tree building

Iteration phase :

- Connector creation between objects (seeding)
- Connector cleaning to obtain a tree structure (cleaning)

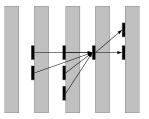

Repeat the two previous algorithms as much as needed.

<u>Global idea</u> : create an initial tree structure to start with. Then alterate the latter by creating more optimized connections.

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
ArborPFA The algorithms				

② Connector creation 1

■ For each object, we look for nearby objects in the 3 next layers within a distance of 45 mm. A connection is then created for each of them.

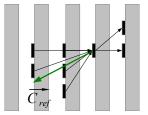


The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
ArborPFA The algorithms				

Clean connectors to create a tree structure.

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
ArborPFA The algorithms				

Clean connectors to create a tree structure. For each object :



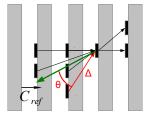
The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
ArborPFA The algorithms				

Clean connectors to create a tree structure. For each object :

• Computation of the reference direction :

$$\vec{C}_{ref} = w_{bck} \cdot \sum_{\sigma} \sum_{b} \vec{c}_{b,\sigma} - w_{fwd} \cdot \sum_{\delta} \sum_{f} \vec{c}_{f,\delta} \quad (5)$$

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
ArborPFA The algorithms				


Clean connectors to create a tree structure. For each object :

• Computation of the reference direction :

$$\vec{C}_{ref} = w_{bck} \cdot \sum_{\sigma} \sum_{b} \vec{c}_{b,\sigma} - w_{fwd} \cdot \sum_{\delta} \sum_{f} \vec{c}_{f,\delta} \quad (5)$$

• For each object in the backward direction, we define the κ order parameter :

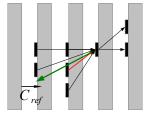
$$\kappa = \left(\frac{\theta}{\pi}\right)^{\rho_{\theta}} \cdot \left(\frac{\Delta}{\Delta_{max}}\right)^{\rho_{\Delta}} \tag{6}$$

ヘロン 人間 とくほ とくほ とう

11/26

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
ArborPFA The algorithms				

Clean connectors to create a tree structure. For each object :


• Computation of the reference direction :

$$\vec{C}_{ref} = w_{bck} \cdot \sum_{\sigma} \sum_{b} \vec{c}_{b,\sigma} - w_{fwd} \cdot \sum_{\delta} \sum_{f} \vec{c}_{f,\delta} \quad (5)$$

• For each object in the backward direction, we define the κ order parameter :

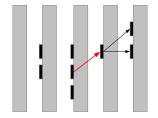
$$\kappa = \left(\frac{\theta}{\pi}\right)^{\rho_{\theta}} \cdot \left(\frac{\Delta}{\Delta_{max}}\right)^{\rho_{\Delta}} \tag{6}$$

• The connector with the smallest $\boldsymbol{\kappa}$ is kept.

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
ArborPFA				

The algorithms

Clean connectors to create a tree structure. For each object :


• Computation of the reference direction :

$$\vec{C}_{ref} = w_{bck} \cdot \sum_{\sigma} \sum_{b} \vec{c}_{b,\sigma} - w_{fwd} \cdot \sum_{\delta} \sum_{f} \vec{c}_{f,\delta} \quad (5)$$

For each object in the backward direction, we define the κ order parameter :

$$\kappa = \left(\frac{\theta}{\pi}\right)^{\rho_{\theta}} \cdot \left(\frac{\Delta}{\Delta_{max}}\right)^{\rho_{\Delta}} \tag{6}$$

- The connector with the smallest κ is kept.
- At the end of the algorithm, the other connectors are deleted.

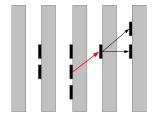
イロト イヨト イヨト イヨト

11/26

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
ArborPFA				

The algorithms

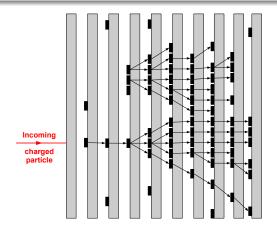
Clean connectors to create a tree structure. For each object :


• Computation of the reference direction :

$$\vec{C}_{ref} = w_{bck} \cdot \sum_{\sigma} \sum_{b} \vec{c}_{b,\sigma} - w_{fwd} \cdot \sum_{\delta} \sum_{f} \vec{c}_{f,\delta} \quad (5)$$

 For each object in the backward direction, we define the κ order parameter :

$$\kappa = \left(\frac{\theta}{\pi}\right)^{\rho_{\theta}} \cdot \left(\frac{\Delta}{\Delta_{max}}\right)^{\rho_{\Delta}} \tag{6}$$


- The connector with the smallest κ is kept.
- At the end of the algorithm, the other connectors are deleted.
- \rightarrow Formation of a tree structure.

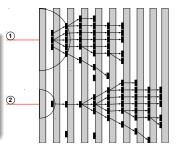
The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
ArborPFA The algorithms				

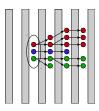
④ et ⑤ Connector alignment

From the latest tree structure, more connections are created. This creates an alignment within the shower. A second connector cleaning is then performed to obtain a final tree structure.

Algorithm performances

ArborPFA The algorithms


(6) Track-to-tree association


Association between tracks and trees performed with simple criteria :

- Distance between a tree seed and track extrapolation to the calorimeter front face.
- Track momentum tree energy comparison
- Handling of special cases as early interactions

⑦ Neutral tree merging

■ Interaction of neutral particles in an absorber. → Many seeds in the same layer, thus many reconstructed trees instead of a single one. Seeds belonging to this kind of configuration are **identified** and their trees **merged**.

イロト イポト イヨト イヨト

The Arbor Particle Flow Algorithm

Algorithm performances

Conclusion and roadmap

Backup

ArborPFA The algorithms

(8) Pointing trees association

Association between neutral (daughter) trees and charged or neutral (parent) trees as a function of their main axis (3D linear fit over object positions) and their energies.

- D.C.A between axes.
- D.C.A between axis and barycentre
- Energy criteria (charged parent tree case)

VETTAL PATTOR

(9) Small neutral tree merging

Small trees (NObj < 20) are merged in the closest bigger tree (NObj \geq 20).

1 Particle Flow Objects creation

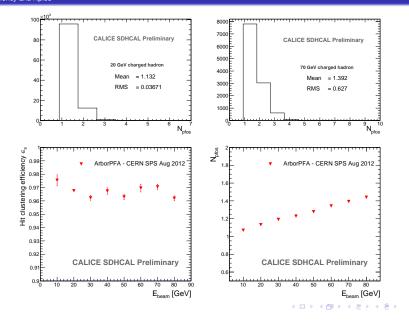
- Creation of reconstructed particles :
 - one track (if charged particle)
 - one tree

Backup

Single particle reconstruction

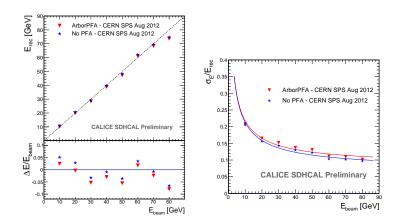
Reconstruction inputs

- Data : CERN SPS 2012 August-September
- Particles : h[±]
- Energies : [10 ; 80] GeV by steps of 10 GeV
- "Fake" track generated :
 - $\vec{p} = (0, 0, E_{beam})$
 - Entry point *e* : barycentre (*b_x*, *b_y*) of hits in the 5 first layers


$$\rightarrow \vec{e} = (b_x, b_y, z_{front})$$

• No magnetic field $(\vec{B} = \vec{0} T)$

Algorithm performances


Single particle analysis

16/26

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
Single particle analy	ysis			

Reconstructed energy and resolution

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
Overlaid particles				

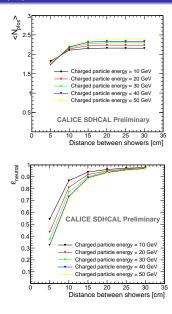
Overlay of two hadronic events

- Same data set
- Particle 1 energy : 10 GeV
- Particle 2 energies : [10 ; 50] GeV by steps of 10 GeV

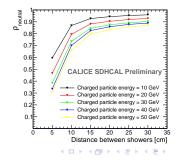
Overlay algorithm :

- Determination of entry points and barycentres.
- Removal of hits belonging to the primary track segment of particle 1 (10 GeV)
- $\bullet\,$ Shower re-centered in calorimeter (x and y) and $\pm\,$ d/2 shift in the x direction
- Overlaid hits : the highest threshold is kept
- Hits are tagged 1, 2 or 3 (overlaid)

イロト イロト イヨト

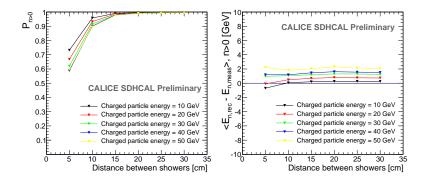

The Arbor Particle Flow Algorithm

Algorithm performances


Conclusion and roadmap

Backup

Overlaid particles



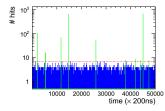
19/26

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
Overlaid particles Probability and energy				

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
Conclusion and ro	admap			

Conclusion

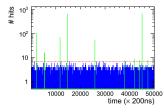
- Particle flow algorithm development based hadronic shower tree topology for the SDHCAL prototype
- Performance extraction for single particle OK
- Performance extraction for two overlaid particles OK till 5 cm


Roadmap

- Correction of some algorithms → re-extract performances (to do)
- Implementation for ILD-like detectors :
 - Angular correction for connections (advanced)
 - Implémentation for ECal (started)
 - Muon reconstruction (to do)
 - $\bullet \ \ \text{Photon reconstruction} \to \text{GARLIC}$
 - Energy calibration (ECal + HCal) (to do)
- Physics performances :
 - Jet energy resolution and scale (to do)
 - W Z separation
 - Physics channel e+e- \rightarrow HZ

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup

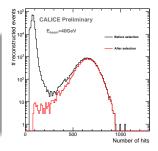
Thanks for your attention !


The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
Backup Particle reconstruction and event	t selection			

Reconstruction : <i>clustering</i> en temps	
---	--

- Minimum NHit : 7
- Time window : ± 2

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
Backup Particle reconstruction and even	t selection			



Hadronic event selection

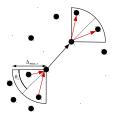
No cherenköv detector \rightarrow topological selection

- Muon : NHit/N_{layer} > 2.2
- Neutral particles : NHit \in 5 first layers \geq 4
- Radiative muons : $\frac{N_{touched layers}/RMS>5cm}{N_{touched layers}}$ < 20 %
- Electrons : $Z_{begin} \ge 5$ and $N_{touched \ layers} \ge 30$

イロト 不良 とくほ とくほう

The Arbor Particle Flow Algorithm

Algorithm performance


Conclusion and roadmap

Backup

Backup ArborPFA - Second connector iteration

6 et 7 Connector alignment

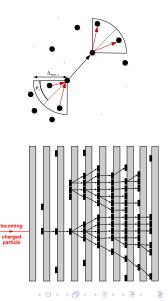
From the previous tree structure, more connectors are created.

・ロト (部)、(音)、(音)、音)、 (つ)、(24/26) 24/26

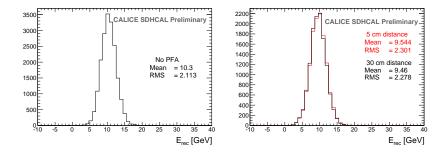
Backup ArborPFA - Second connector iteration

6 et 7 Connector alignment

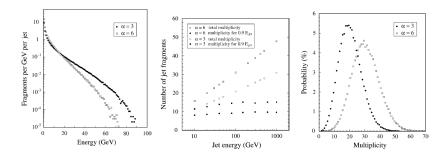
From the previous tree structure, more connectors are created.


⑦ Connector cleaning 2

Similar second connector cleaning.


One difference : cleaning performed layer per layer starting from the last one, with δ = 2

 \rightarrow Connector aligned with forward connections.


 \rightarrow Tree structure !

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
Backup Overlaid hits approximation				

The CALICE SDHCAL prototype	The Arbor Particle Flow Algorithm	Algorithm performances	Conclusion and roadmap	Backup
Backup 100 GeV jets statistics				

O. Lobban, A. Sriharan, R. Wigmans, NIM. A495 (2002) 107-120

◆□ → < 部 → < 差 → < 差 → 差 の < ? 26/26