Double-sided pixelated layers studies from the PLUME collaboration LCWS15

Benjamin BOITRELLE On behalf of the PLUME Collaboration

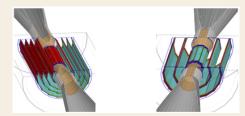
Whistler, Vertex/Tracking session

November 4, 2015

イロト イポト イヨト イヨト

Outlines

- Reminder on the PLUME project
 - Motivations of the project
 - Collaboration
 - Design
- 2 Deformation studies with the version 1 prototype
 - Test Beam @ SPS
 - Origin of deviations and how to take them into account
 - Results on the correction of deviations
- 3 Benefits of a double-sided ladder
 - Spatial residual
 - Angular resolution


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

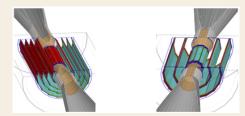
Motivations of the project Collaboration Design

The ILD Vertex Detector

The ILC vertex detector requirements

- Spatial resolution: < 3 μm
- Material budget per measurement point: $\simeq 0.15\%~X_0$

Two geometry options for the ILD vertex detector: 5 layers of single-sided detector (left) or 3 layers of double-sided detector (right)


◆□ ▶ ◆□ ▶ ▲ 三 ▶ ▲ □ ▶ ◆ □ ▶

Motivations of the project Collaboration Design

The ILD Vertex Detector

The ILC vertex detector requirements

- Spatial resolution: < 3 μm
- Material budget per measurement point: $\simeq 0.15\%~X_0$

Two geometry options for the ILD vertex detector: 5 layers of single-sided detector (left) or 3 layers of double-sided detector (right)

◆□ ▶ ◆□ ▶ ▲ 三 ▶ ▲ □ ▶ ◆ □ ▶

Motivations of the project Collaboration Design

Double-sided vertex detector: PLUME

PLUME = **P**ixelated Ladder with **U**ltra-low **M**aterial **E**mbedding

- DAQ
- Flex circuits
- Test beam analysis

- Lab validation of ladders
- Test beam analysis

- Mechanical design
- Assembly
- Metrology

Goals

- To build double-sided vertex detector with CMOS sensors
- To demonstrate the feasibility of the mechanical structure
- To get expertise on the mechanical structure production
- To support benefits of double-sided layers

Motivations of the project Collaboration Design

Ladder design

Design


- Double-sided ladder with an active area of 1x12cm²
- On each side: six MIMOSA-26 CMOS sensors thinned to 50 μm glued on a kapton-metal flex cable
- 2 mm of silicon carbide foam as mechanical support and spacer between two modules

Benjamin BOITRELLE

Motivations of the project Collaboration Design

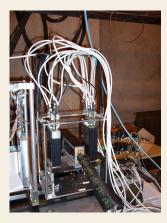
Evolution of the design

- Version 0: proof the feasibility
- Version 1:
 - Full electrical ladders with six Mi-26 on each side
 - Wide flex cable with copper traces
 - Material budget: 0.6% X₀ (8%-foam)
- Version 2:
 - Reduction of the dead area (flex cable less wide)
 - Reduction of the material to 0.35% X_0 (4%-foam and aluminum traces)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Test Beam @ SPS Drigin of deviations and how to take them into account Results on the correction of deviations

◆□ ▶ ◆□ ▶ ▲ 三 ▶ ▲ □ ▶ ◆ □ ▶


Outlines

Reminder on the PLUME project

- Motivations of the project
- Collaboration
- Design
- 2 Deformation studies with the version 1 prototype
 - Test Beam @ SPS
 - Origin of deviations and how to take them into account
 - Results on the correction of deviations
- 3 Benefits of a double-sided ladder
 - Spatial residual
 - Angular resolution

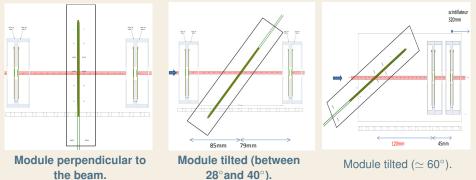
Test Beam @ SPS Origin of deviations and how to take them into account Results on the correction of deviations

Test beam @ SPS with 120 GeV π^- in November 2011

- Beam test on line H6a @ SPS
- Reference plane: four Mimosa 26
- Validation of the first PLUME double sided ladder equipped with 12 Mi26 sensors

Results:

- Efficiency measured as a function of the fake hit rate
- Pointing resolution: $\simeq 3 \mu m$
- Measurements done with different air flow speed (\simeq 3 to 6 ms⁻¹) and position

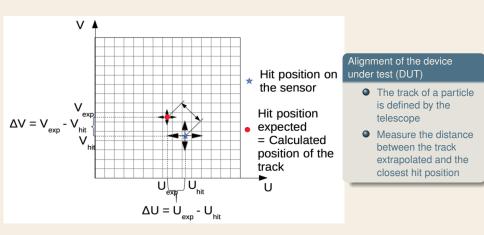

Jérôme Baudot, Gilles Claus, Loic Cousin, Mathieu Goffe, Rohrry Gold, Joel Goldstein, Ingrid Maria Gregor, Robert Maria.

Test Beam @ SPS Origin of deviations and how to take them into account Results on the correction of deviations

◆□ ▶ ◆□ ▶ ▲ 三 ▶ ▲ □ ▶ ◆ □ ▶

Test beam @ SPS with 120 GeV π^- in October 2011

Three configurations studied:

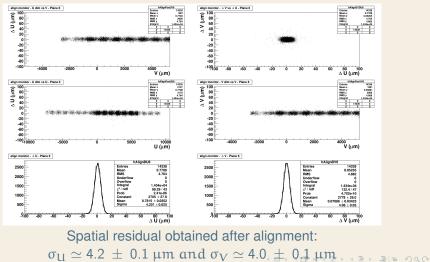


 \Rightarrow Advanced analysis to study track-hit residual and the distribution of this residual as a function of the relative position of the beam on the sensor.

Test Beam @ SPS Origin of deviations and how to take them into account Results on the correction of deviations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ■ ○ ○ ○

Track-hit residual

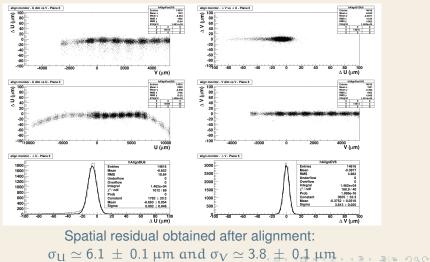


$$\sigma_{res}^2 = \sigma_{DUT}^2 + \sigma_{tel}^2$$

Test Beam @ SPS Origin of deviations and how to take them into account Results on the correction of deviations

Module perpendicular to the beam

Threshold of 6 σ , fan speed < 5m/s and 1.8M events.



Benjamin BOITRELLE

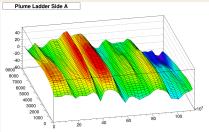
Test Beam @ SPS Origin of deviations and how to take them into account Results on the correction of deviations

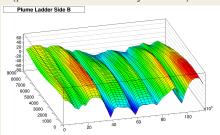
Module titled in one direction (w.r.t. to the beam axis)

Threshold of 6 σ , fan speed < 5m/s, 720k events and a tilt of 36 °.

Benjamin BOITRELLE

Double-sided pixelated layers


Test Beam @ SPS Origin of deviations and how to take them into account Results on the correction of deviations

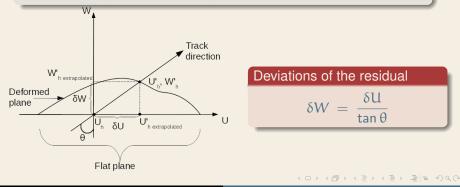

Origin of the deviations

Consequence of the ladder's characteristics

- Use of ultra-thin (50 $\,\mu m)$ and precise sensors (spatial resolution less than 4 $\,\mu m)$
- Mechanical constraints induce permanent deformations ($\simeq 50 \ \mu m$) which can not be flattened during the ladder assembly

Metrology of the module's surface (performed at RAL by Bristol)

Benjamin BOITRELLE


Double-sided pixelated layers

Test Beam @ SPS Origin of deviations and how to take them into account Results on the correction of deviations

Origin of the devations

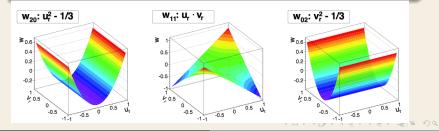
Artefacts from the modelling of our sensors during the analysis

- Modelling the sensors as completely flat planes
- The track extrapolation is sensitive to the exact position of the hit on the plane and the angle of incidence

Test Beam @ SPS Origin of deviations and how to take them into account Results on the correction of deviations

How to describe deviations from the flat plane?

arXiv:1403.2286 [physics.ins-det] CMS paper

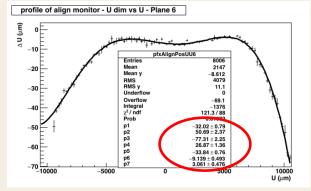

• Sensor shape parametrised as a sum of products of modified Legendre polynomials:

 $w(u_r, v_r) = w$

 $+w_{10} \cdot u_r + w_{01} \cdot v_r$

 $+w_{20}\cdot(u_r^2-1/3)+w_{11}\cdot(u_r\cdot\nu_r)+w_{02}\cdot(\nu_r^2-1/3)$

• In our case, we used Legendre polynomials of the 7th order only in the direction of the deformation.



Benjamin BOITRELLE Double-sided pixelated layers

Test Beam @ SPS Origin of deviations and how to take them into account Results on the correction of deviations

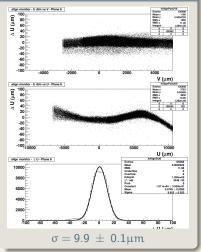
Parametrization of the deformation

Parametrize deformation with Legendre polynomials of the 7th order on the U direction only

New plane position:

Extrapolation of the plane position in the W direction thanks to the 7th coefficients obtained after fitting

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶


Test Beam @ SPS Origin of deviations and how to take them into account Results on the correction of deviations

Module tilted with an angle of 28°

Threshold of 5 σ , fan speed of 6 m/s, 720k events.

Benjamin BOITRELLE

Before correction

After correction

Double-sided pixelated layers

Test Beam @ SPS Origin of deviations and how to take them into account Results on the correction of deviations

Summary of correction for different angles and same planes

Spatial residuals

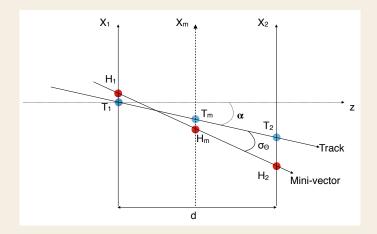
Side	Tilted angle	σ ^{Def} (μm)	σ ^{Cor} (μm)	Improvement
Front	28	$8.8~\pm~0.1$	$4.8~\pm~0.1$	45.5 %
Back	28	$5.6~\pm~0.1$	$4.5~\pm~0.1$	19.6 %
Front	36	13.4 \pm 0.1	6.3 ± 0.1	52.9 %
Back	36	$7.5~\pm~0.1$	$6.8~\pm~0.1$	9 %
Front	60	$41.2~\pm~0.15$	$25.8~\pm~0.2$	37.4 %
Back	60	$23.3~\pm~0.13$	$21.7~\pm~0.1$	6.8 %

Residual increases with incidence angle, in line with telescope resolution degrading (under quantitative evaluation)

Refinement of the correction with an iterative procedure is ongoing

Spatial residual Angular resolution

Outlines

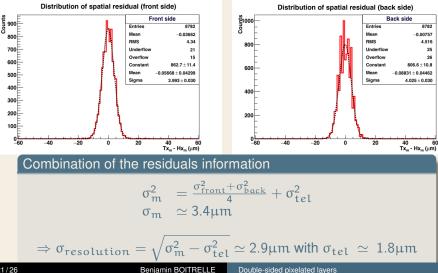

Reminder on the PLUME project

- Motivations of the project
- Collaboration
- Design
- Deformation studies with the version 1 prototype
 Test Beam @ SPS
 - Origin of deviations and how to take them into account
 - Results on the correction of deviations
- 3 Benefits of a double-sided ladder
 - Spatial residual
 - Angular resolution

◆□ ▶ ◆□ ▶ ▲ 三 ▶ ▲ □ ▶ ◆ □ ▶

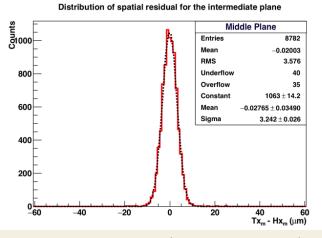
Spatial residual Angular resolution

Two points measurement combination



< ロ ト < 母 ト < 臣 ト < 臣 ト 王 国 の Q ()</p>

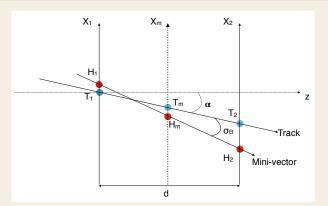
Spatial residual


Spatial residual

Study of two planes in normal incidence (w.r.t the beam axis)

Spatial residual Angular resolution

Mini-vector spatial residual



$$\begin{split} \sigma_{measured} &\simeq 3.2 \mu m (\sigma_{expected} \simeq 3.4 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.7 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.9 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.9 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.9 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.9 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.9 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.9 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.9 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resolution} &\simeq 2.9 \mu m (\sigma_{resolution} \; expected \approx 2.9 \mu m) \\ \sigma_{resoluti$$

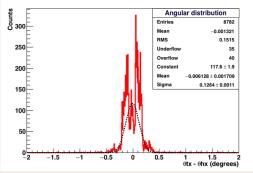
Reminder on the PLUME project Benefits of a double-sided ladder

Angular resolution

Estimation of the angular resolution

stimation of the angular resolution
$$\begin{aligned} \sigma_{\theta} &= \frac{\sqrt{\sigma_{s1}^2 + \sigma_{s2}^2}}{d} \\ \sigma_{\theta} &\simeq 0.146^{\circ} \end{aligned} \qquad \text{with } \sigma_{s1} &= \sigma_{s2} \simeq 3.6 \ \mu\text{m} \end{aligned}$$

Spatial residual Angular resolution


Estimation of the angular resolution

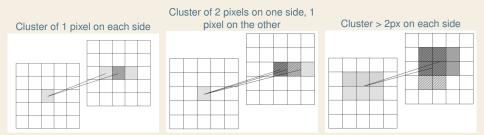
Estimation of the angular resolution

$$\begin{array}{ll} \sigma_{\theta} & = \frac{\sqrt{\sigma_{s1}^2 + \sigma_{s2}^2}}{d} \\ \sigma_{\theta} & \simeq 0.146^{\circ} \end{array}$$

with $\sigma_{s1}~=~\sigma_{s2}~\simeq 3.6~\mu m$

Distribution of the angle between the track direction and the mini-vector direction

Angular resolution:

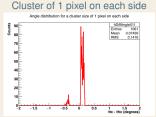

Can not be simply quoted by a Gaussian standard deviation

◆□ ▶ ◆□ ▶ ▲ 三 ▶ ▲ □ ▶ ◆ □ ▶

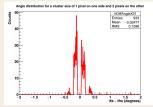
Spatial residual Angular resolution

Origin of the peaks

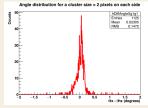
- Cluster position determined by its centre of gravity
- Angle distribution is dependent of the cluster size taken into account



◆□ ▶ ◆□ ▶ ▲ 三 ▶ ▲ □ ▶ ◆ □ ▶


Spatial residual Angular resolution

Origin of the peaks


- Cluster position determined by its centre of gravity
- Angle distribution is dependent of the cluster size taken into account

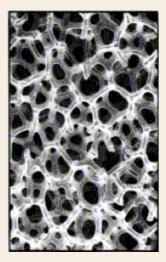
Cluster of 2 pixels on one side, 1 pixel on the other

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Spatial residual Angular resolution

Conclusions

- Deformation impacts severely resolution at even modest incident angle
- Deformation can be corrected by software... but not yet perfectly (Iteration procedure is being implemented)
- Estimation of the angular distribution and the cluster position are correlated ⇒ combination of these estimations in order to improve the spatial resolution is possible
- New prototype with lower material budget will be tested to compare the stability and deformation features
- Real ladder shall be mitigated by design (flatten the SiC foam done by machining it but requires more money than we have)

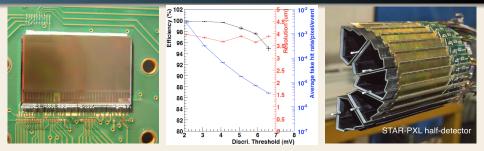

Outlook

Investigate how the findings on the first PLUME hold the thinner new prototype

Thanks for your attention!!!

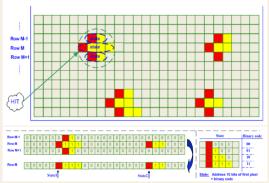
<ロト < 部 > < 目 > < 目 > < 目 > < の < 0</p>

Foam support structure



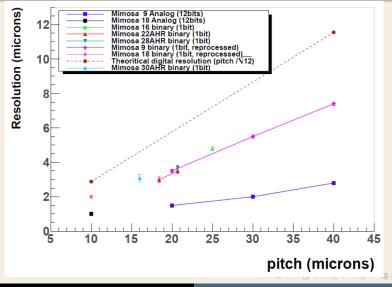
Properties

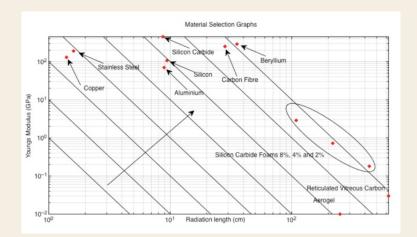
- Open-cell foam
- Macroscopically uniform
- No tensioning needed
- 4 to 8 % fill factor (2-3 % possible)
- Low thermal and electrical conductivity (50 W/m/K)


◆□ ▶ ◆□ ▶ ▲ 三 ▶ ▲ □ ▶ ◆ □ ▶

MIMOSA-26 sensor

- Monolithic Active Pixels Sensor
- Pitch of 18.4 µm (square pixels)
- Active area: 10.6 x 21.2 mm² (576 rows x 1152 columns)
- Column-parallel readout: integration time of 115.2 µs (200 ns per line) for 80 MHz clock
- Zero suppression (to optimize data bandwith) with binary output
- Well known sensors \Rightarrow used for EUDET telescope
- Extended to MIMOSA-28 exploited in STAR-PXL vertex detector @ RHIC-BNL since
 2014


Zero Suppression logic (SUZE)


SUZE logic split in 3 blocks :

- Sparse Data Scan (SDS) Hit detection per line and data encoding, until 6 states consecutive pixels (1 to 4 pixels) per block of 64 columns;
- Multiplexing Logic (Mux) giving up to 9 states;
- Memory storage 2 blocks to store the states of the full frame, switching to avoid dead time (during one acquire states of event N, the other one transfer the information of frame N-1).

Spatial resolution for different pitch (IPHC-Strasbourg)

Young modulus VS radiation legnth

Benjamin BOITRELLE Double-sided pixelated layers

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ■ ○ ○ ○