
H→bb/cc/gg at high-energy CLIC operation

Philipp Roloff (CERN)

International Workshop on Future Linear Colliders (LCWS15) 04/11/2015, Whistler, Canada

Reminder: Higgs production

 \rightarrow measurements at high energy benefit from good detectors in the for

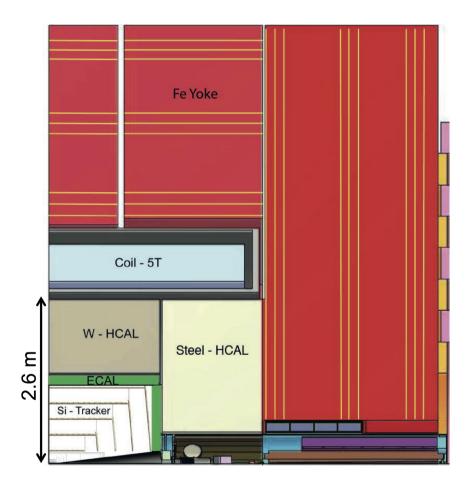
04/11/2015

Philipp Roloff

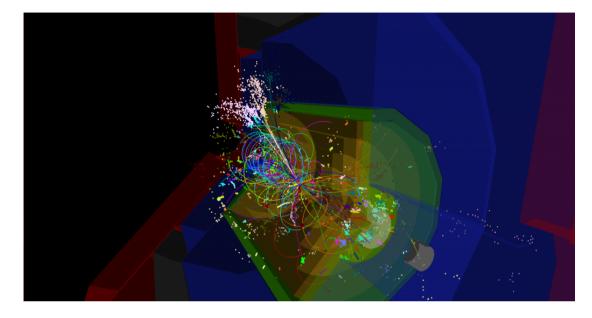
Monte Carlo samples at 1.4 TeV

Process: $e^+e^- \rightarrow Hv\overline{v}, m(H) = 126 \text{ GeV}$ $e^+e^- \rightarrow Hv\overline{v}, m(H) = 125.95 \text{ GeV}$ $e^+e^- \rightarrow Hv\overline{v}, m(H) = 126.1 \text{ GeV}$	Cross section [fb]: 244.02 243.93 244.07	Comments:
$e^+e^- \rightarrow qqvv$ $e^+e^- \rightarrow qq$ $e^+e^- \rightarrow qqlv$ $e^+e^- \rightarrow qqll$	788 4000.8 4312.9 2726.7	
$e\gamma \rightarrow qqe (EPA)$ $e\gamma \rightarrow qqe (BS)$ $\gamma e \rightarrow qqe (EPA)$ $\gamma e \rightarrow qqe (BS)$	2664.5 7517.2 2664.6 7529.5	m(q,q) > 50 GeV m(q,q) > 50 GeV m(q,q) > 50 GeV m(q,q) > 50 GeV
$e\gamma \rightarrow qqv (EPA)$ $e\gamma \rightarrow qqv (BS)$ $\gamma e \rightarrow qqv (EPA)$ $\gamma e \rightarrow qqv (BS)$	3874.6 14407.9 3875.1 14386.0	m(q,q) > 50 GeV m(q,q) > 50 GeV m(q,q) > 50 GeV m(q,q) > 50 GeV
$\begin{array}{l} \gamma\gamma ightarrow qq~(EPA/EPA) \ \gamma\gamma ightarrow qq~(EPA/BS) \ \gamma\gamma ightarrow qq~(BS/EPA) \ \gamma\gamma ightarrow qq~(BS/BS) \end{array}$	3495.4 17335.4 17328.0 73600.5	m(q,q) > 50 GeV m(q,q) > 50 GeV m(q,q) > 50 GeV m(q,q) > 50 GeV

04/11/2015 Philipp Roloff $H \rightarrow b\overline{b}/c\overline{c}/gg$ at high energy


Monte Carlo samples at 3 TeV

Process: $e^+e^- \rightarrow Hv\overline{v}, m(H) = 126 \text{ GeV}$ $e^+e^- \rightarrow Hv\overline{v}, m(H) = 125.95 \text{ GeV}$ $e^+e^- \rightarrow Hv\overline{v}, m(H) = 126.1 \text{ GeV}$	Cross section [fb]: 415.05 415.1 414.9	Comments:
$e^+e^- \rightarrow qqvv$ $e^+e^- \rightarrow qq$ $e^+e^- \rightarrow qqev$ $e^+e^- \rightarrow qqee$	1305 3076 5255 3341	
$e\gamma \rightarrow qqe (EPA)$ $e\gamma \rightarrow qqe (BS)$ $\gamma e \rightarrow qqe (EPA)$ $\gamma e \rightarrow qqe (BS)$	3525.2 8530.8 3523.4 8533.2	m(q,q) > 50 GeV m(q,q) > 50 GeV m(q,q) > 50 GeV m(q,q) > 50 GeV
$e\gamma \rightarrow qqv (EPA)$ $e\gamma \rightarrow qqv (BS)$ $\gamma e \rightarrow qqv (EPA)$ $\gamma e \rightarrow qqv (BS)$	6417.5 21234.9 6414.1 21230.6	m(q,q) > 50 GeV m(q,q) > 50 GeV m(q,q) > 50 GeV m(q,q) > 50 GeV
$\begin{array}{l} \gamma\gamma ightarrow qq~(EPA/EPA) \ \gamma\gamma ightarrow qq~(EPA/BS) \ \gamma\gamma ightarrow qq~(BS/EPA) \ \gamma\gamma ightarrow qq~(BS/BS) \end{array}$	4228.2 21893.8 21888.7 77365.9	m(q,q) > 50 GeV m(q,q) > 50 GeV m(q,q) > 50 GeV m(q,q) > 50 GeV


04/11/2015 Philipp Roloff

Event simulation


- Pile-up from $\gamma\gamma \rightarrow hadrons$ interactions overlaid (60 BX)
- Simulation of the CLIC_SiD detector based on Geant4
- Reconstruction of particles using the Particle Flow technique (Pandora)
- Suppression of beam-induced backgrounds using combined timing and momentum cuts

A typical $Hv_e v_e \rightarrow b \overline{b} v_e v_e$ event at 1.4 TeV

all particles

selected particles (combined timing and momentum cuts)


04/11/2015

Philipp Roloff

Jet reconstruction and flavour tagging

• Longitudinally invariant k, algorithm in the exclusive mode with 2 jets:

R = 1.0 at 1.4 TeV, R = 0.7 at 3 TeV
The particles in the jets are passed to LCFIPlus for vertex reconstruction and flavour tagging

(the Z has similar kinematics as the H in signal events)

04/11/2015

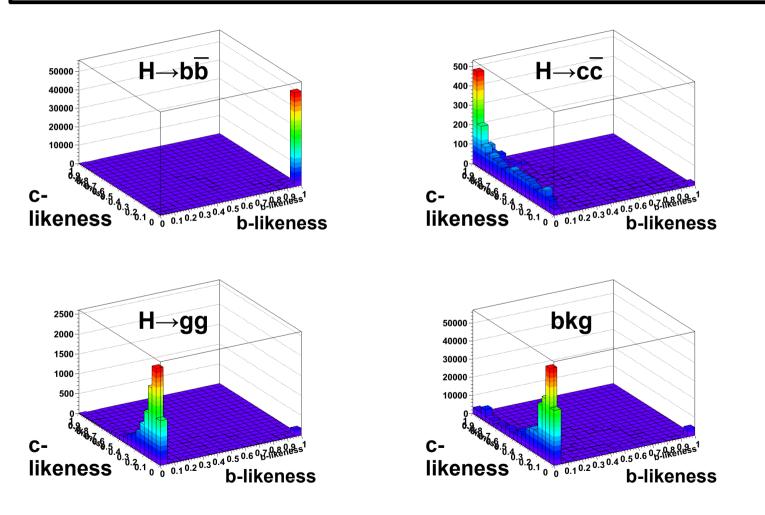
Philipp Roloff

Event selection

1.) Preselection cuts:

- 60 < m^{j1, j2} < 160 GeV
 E^{j1} + E^{j2} > 75 GeV
 p_T^{miss} > 20 GeV
 ΔR(j1, j2) < 4

j1: first jet j2: second jet

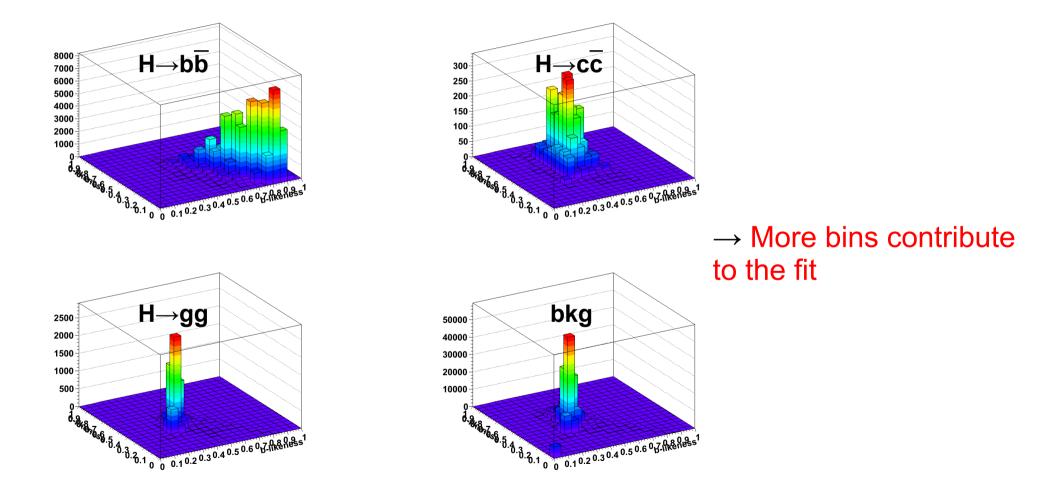

2.) Multivariate classifiers (BDT with gradient boost)

• Using $H \rightarrow b\overline{b}$, $H \rightarrow c\overline{c}$ and $H \rightarrow gg$ as signal in one classifier (18 input variables) and then template fitting using flavour tagging information

• Separate classifier for each flavour as a cross check

Templates at 1.4 TeV

b-likeness: btag1 * btag2 / (btag1 * btag2 + [1 - btag1] * [1 - btag2]) **c-likeness:** ctag1 * ctag2 / (ctag1 * ctag2 + [1 - ctag1] * [1 - ctag2])

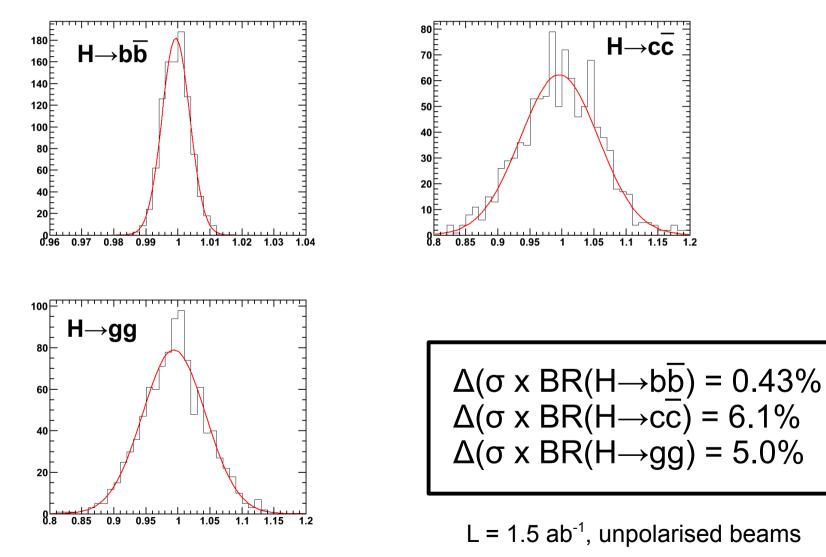


Philipp Roloff

H→bb/cc/gg at high energy

Templates remapped at 1.4 TeV

b-likeness \rightarrow [AtanH((2 * b-likeness – 1) * TanH(β)) + β] / (2 * β) with β = 8 c-likeness \rightarrow [AtanH((2 * c-likeness – 1) * TanH(β)) + β] / (2 * β) with β = 5



04/11/2015

H→bb/cc/gg at high energy

Results from templates at 1.4 TeV

Toy Monte Carlo (1000 iterations to extract precisions):

Philipp Roloff

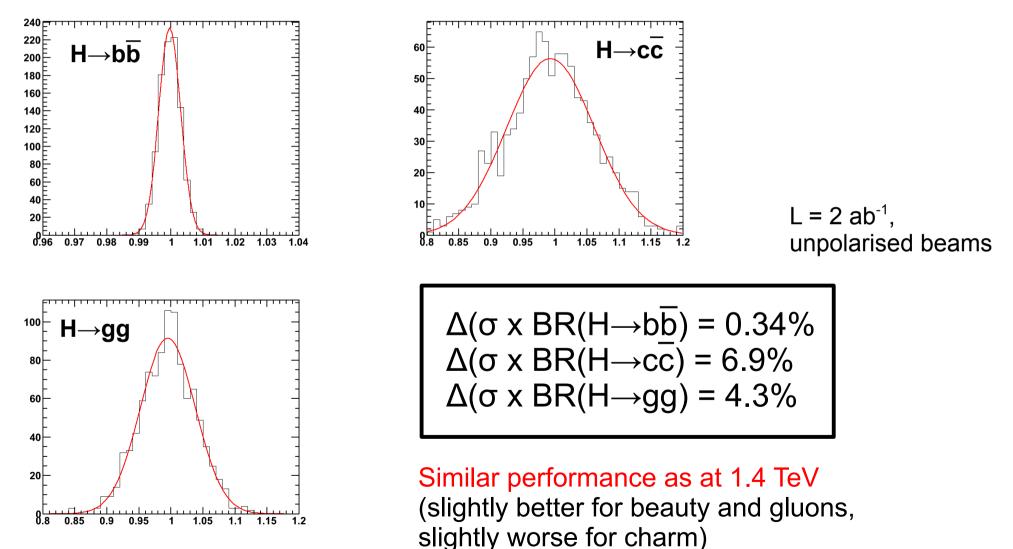
Individual BDTs

Now train a BDT for each Higgs decay (flavour tagging variables included):

$$\Delta(\sigma \times BR(H \rightarrow b\overline{b}) = 0.37\%$$

$$\Delta(\sigma \times BR(H \rightarrow c\overline{c}) = 6.2\%$$

$$\Delta(\sigma \times BR(H \rightarrow gg) = 4.9\%$$


 $L = 1.5 \text{ ab}^{-1}$, unpolarised beams

- Slightly better than template fitting for beauty \rightarrow The common selection is not ideal for beauty (because the m^{j1, j2} and #particles distributions are different)
- Almost identical for charm and gluons

Template fitting preferred, because correlations are provided

Results from templates at 3 TeV

Toy Monte Carlo (1000 iterations to extract precisions):

Philipp Roloff

04/11/2015

Mass measurement

- Remove Higgs candidate mass from BDT for event selection
- Extract Higgs mass from visible Higgs mass distribution
- Strategy: template fit using samples generated with shifted Higgs mass
- At 1.4 TeV a precision of better than 40 MeV seems feasible (consistent with earlier preliminary results), 3 TeV tbd
- Good understanding of b-jet energy scale and flavour tagging efficiencies crucial!

Summary and conclusions

• The physics potential for measurements of hadronic decays of the SM Higgs boson decays at a high-energy CLIC collider is investigated using a full detector simulation and including pile-up from $\gamma\gamma \rightarrow$ hadrons interactions

• Two different techniques for the extraction of the fractions of Higgs decays to beauty, charm and gluons are in reasonable agreement

• The Higgs mass can be extracted from the $H \rightarrow b\overline{b}$ invariant mass distribution

• This analysis is an important test case for flavour tagging with the new CLIC detector model

• Possible extension: constrain CP odd contribution to WWH coupling