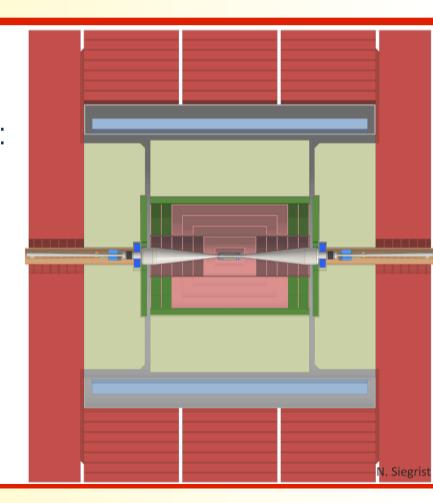
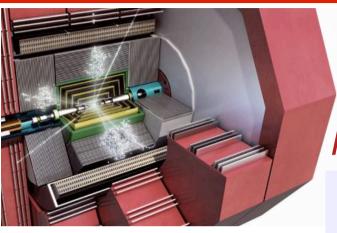


CLIC detector and physics


LCWS, 2 November 2015


CLIC detector and physics

- Overview
- R&D and optimization developments:
 - vertexing
 - tracking
 - calorimetry
- New detector baseline
- Modelling and software
- Physics analysis
- Outlook

CLIC detector and physics

CLIC Beam structure

Not to scale!

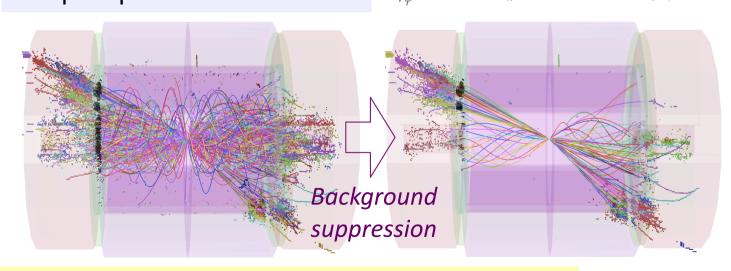
20 ms

The structure structure

High precision:

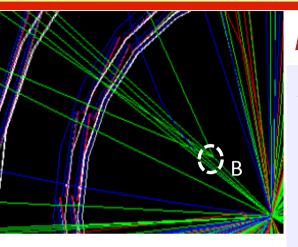
jet energy resolution
-> fine-grained calorimetry
momentum resolution
impact parameter resolution

 $\sigma(E)/(E) \sim 3.5\%$ for E>100GeV


 $\sigma(p_{\rm T})/p_{\rm T}^2 \sim 2 {\rm x} 10^{-5}~{\rm GeV}^{-1}$ $\sigma_{r\phi} \sim 5 \oplus 15/(p {\rm [GeV]} \sin^{3/2}\theta)~{\rm \mu m}$

CALICE / FCAL

CLICdp vertexing/ tracking programme


High occupancy
-> precise timing
(1ns, 10ns)

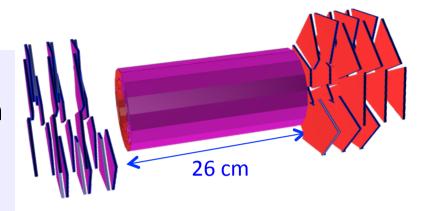
Provide demonstrators for the main technical challenges

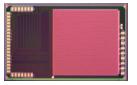
Vertex detector

Requirements:

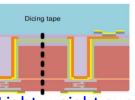
Accurate:

3μm single-point resolution

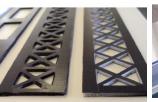

 $-> 25 \times 25 \mu m^2$ pixels


Ultra-light:

 $\leq 0.2\% X_0$ per layer


Simulations

~50 mW/cm²



Interconnects

Light-weight supports

3 double layers in barrel and endcaps ~1m² area, ~2G pixels

 $R_i \sim 31$ mm at 3 TeV (background occupancies) spiral endcap geometry (air flow cooling)

Integrated R&D effort

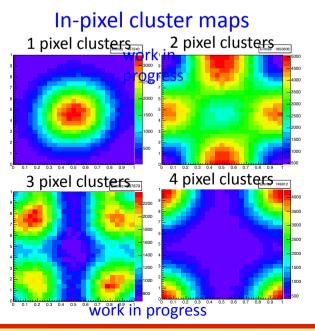
Recent highlights:

First test-beam & lab measurements with planar CLICpix assemblies Systematic studies of capacitivelycoupled HV-CMOS assemblies Simulation of HV-CMOS sensors

Powering

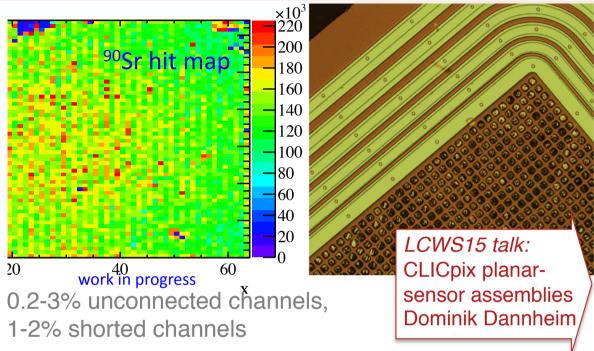
Cooling

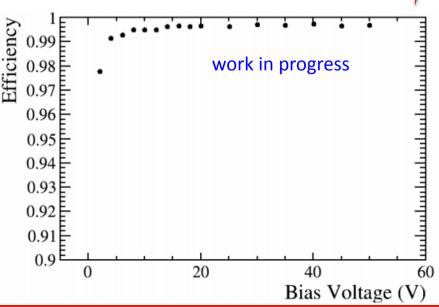
Detector integration + assembly



Planar-sensor CLICpix assemblies

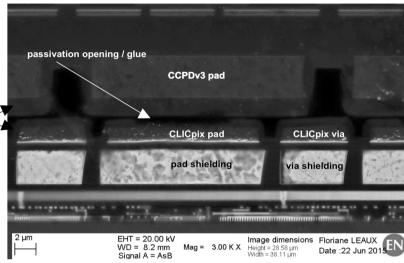
CLICpix: CMOS hybrid readout chip targeted for CLIC vertex detectors, based on Timepix/Medipix chip family


First three bump-bonded pixel assemblies produced using single-chip bump-bonding process at SLAC, 25µm pitch

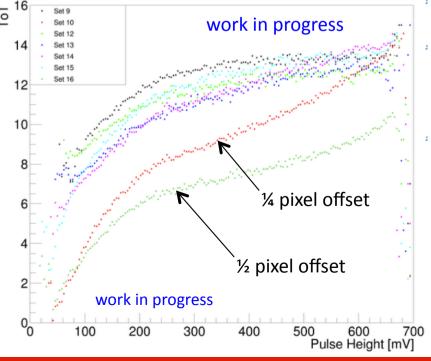

◆ Device is small, 3x3mm²,
 but a significant step

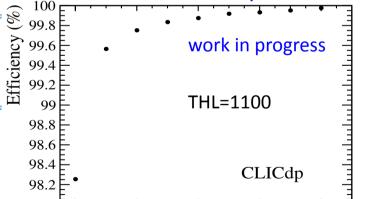
- V_{dep}~35 V
- High detection efficiency (>99.5%)
- ~30% single-pixel clusters at V_{dep}
- ~4µm single-point resolution

Capacitive coupling


passivation

Capacitive Coupled Pixel Detector (CCPD)


 capacitive coupling of 64x64 matrix (25 μm pitch) to CLICpix readout ASIC through thin glue layer (few μm)


> Systematic studies of glue parameters Achieved ~1µm alignment precision, 0.5µm glue thickness

SEM picture CCPDv3-CLICpix assembly

Measured CCPDv3+CLICpix response

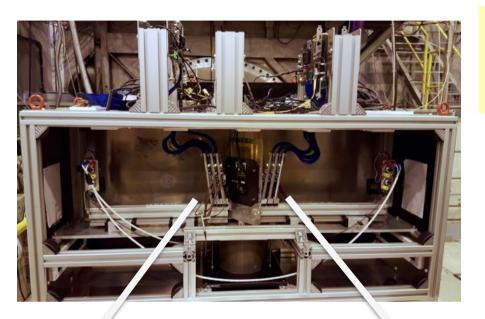
Detection efficiency vs. bias

CLICdp-Pub-2015-003

SPS test beam

- High detection efficiency
- ~6μm single-point resolution

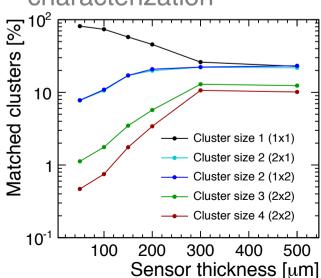
LCWS15 talk:

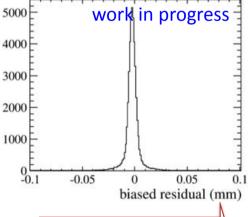

Capacitively-coupled pixel detectors for the CLIC vertex detector Steven Green

 Proof of principle achieved, calibration in progress

Voltage (V)

Timepix3 telescope




Built, installed and commissioned highperformance beam telescope with Timepix3 readout, at SPS H6 beam

used first to test active edge sensors power pulsing tests started 5000 wo

 Will allow timing performance characterisation

Ongoing thin sensor characterization

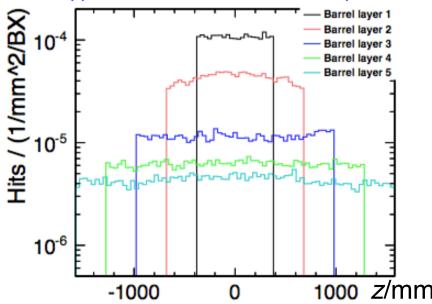
LCWS15 talk:

Recent developments in

LC vertex/tracking R&D

Dominik Dannheim

LCWS15 talk:
Thin-sensor studies for the CLIC vertex detector Sophie Redford



Tracking detector

For CDR used two models: CLIC_ILD with TPC, and CLIC_SiD with Si tracker. At 3TeV, TPC had ~30% occupancy

- -> develop full silicon tracker approach
 New CLICdp working group: tracker technology
 - Systematic optimization of geometries:
 - background occupancies
 - detector performance

Beam-induced background hits from γγ → hadrons and incoherent pairs:

Requirements:

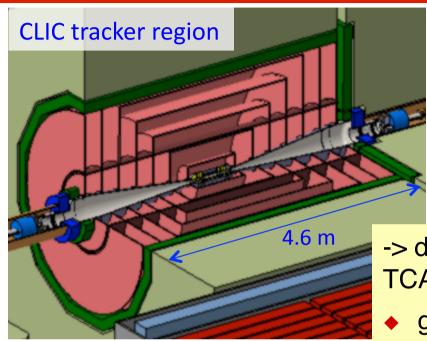
Accurate:

 $7\mu m$ single-point resolution Light:

~1–2% X_0 per layer Few % max. occupancy from beam-induced backgrounds

High occupancies in certain regions
-> need large pixels / short strips
Readout granularity ~50µm x 1-10mm

Larger tracker radius benefits:


pt resolution, track angular resolution, jet energy resolution from particle flow

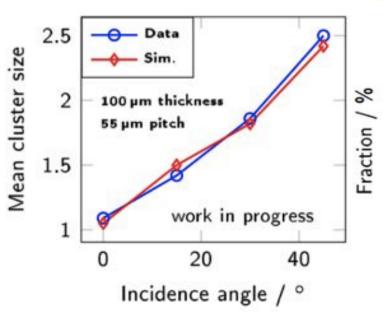
-> increase from 1.3m to 1.5m (with 4T field)

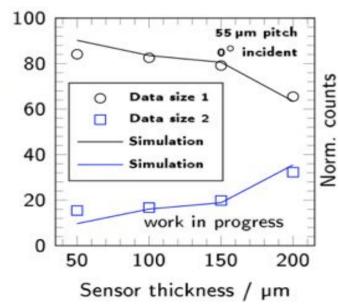
Long tracker extent needed for forward acceptance -> use 2.3m half-length

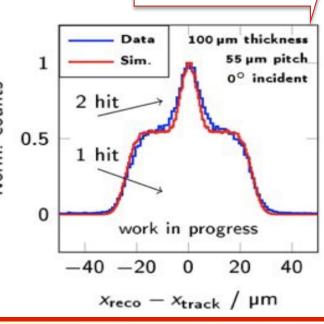
Tracker technology

Outer tracker:

- 5 barrel, 7 forward layers, R~1.5 m, L~4.6 m
- beam pipes with conical sections


How to achieve 7μm single-point resolution: sensor technology? readout cell size? charge sharing? analogue energy information?


-> developing simulations (Geant + TCAD + parameterised FE-electronics)

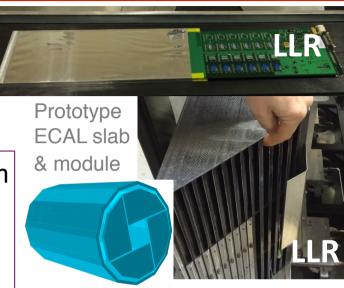

good agreement with testbeam data

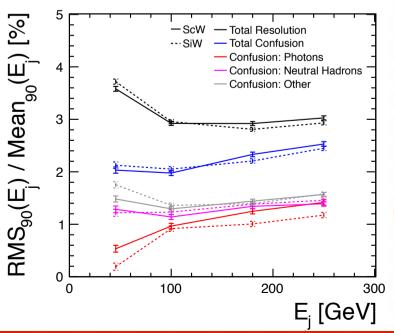
LCWS15 talk:

Tracker-technology
R&D for CLIC
Andreas Nurnberg

ECAL

Requirements:

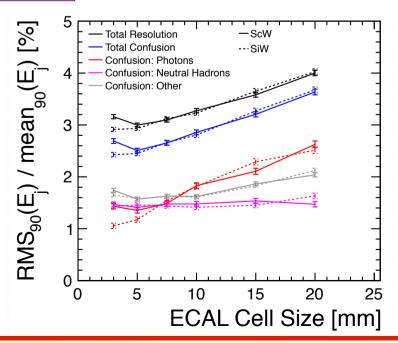

High granularity imaging calorimeters to use with Pandora Particle Flow algorithms



lab tests with both scintillator tiles & SiPMs

Concept adopted from CALICE SiW development ECAL is a cost driver -> post-CDR optimization

inner radius reduced: 1.5m
 number of layers reduced
 from 29 to 25 (little change
 in performance)
 cell size remains 5x5mm²

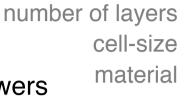


Jet energy resolution:

Total resolution

Total confusion

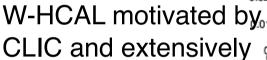
Photon Other
Neutral hadron


HCAL

Similar optimization for HCAL

Trade-off between:

-depth to contain high-energy showers


-compact size for surrounding solenoid

Absorber options:

10mm Tungsten (W)

19mm Steel (Fe)

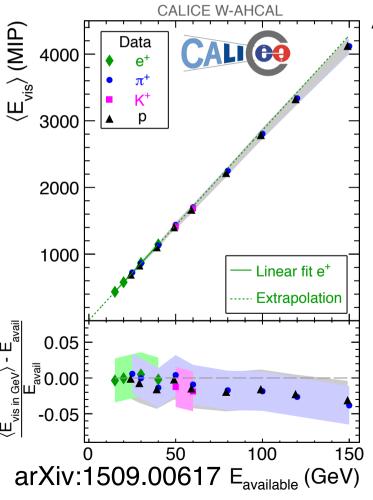
studied (CALICE)

comparison of response for different particle types - agree to ~60GeV Well-described in simulation

0.09

Performance for jets found to be similar for W and Fe;

Fe is cheaper and easier to produce


Study m_W (W->ud) and m_Z (Z->dd)

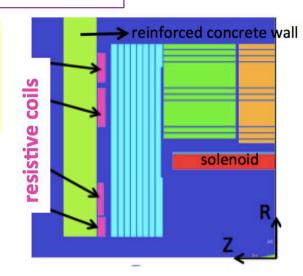
19 mm Fe absorber, 60 layers, timing cut 10ns

LCWS15 talk: **HCal** optimization studies for the ILD Steven Green

Steel chosen for HCAL

60 layers, 30x30mm² cell 20mm Fe / 3mm scintillator

New detector concept

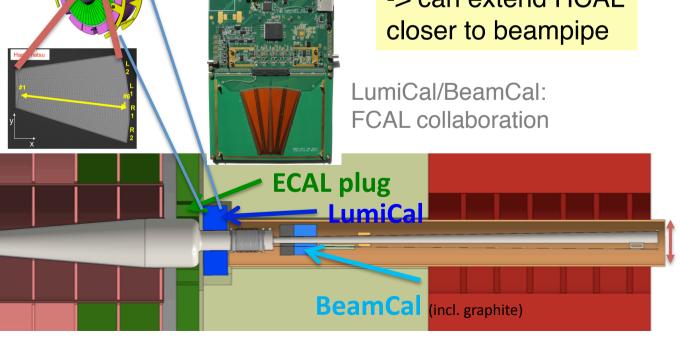

Learning from experience with CLIC_ILD and CLIC_SiD, and optimization studies

Vertex detector, tracker, ECAL, HCAL

Final quadrupole QD0 was inside detector

-> maximal luminosity but reduced forward coverage.

- -> decided to move QD0 to $L^* = 6m$ outside detector, by thinning return yoke
- -> number of muon layers reduced 9 to 6.
- -> can extend HCAL

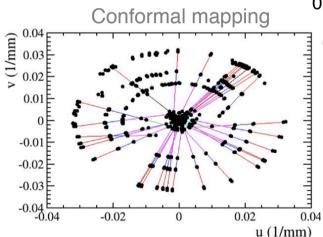

~500

New detector model to be used for future studies

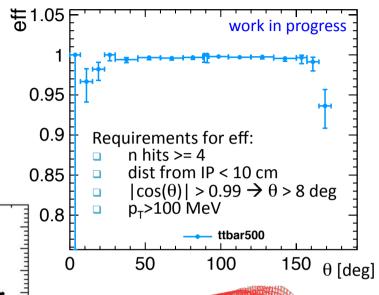
All updates together:

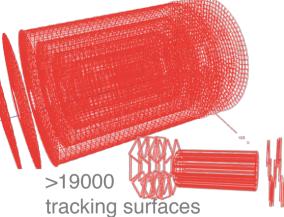
mm

LCWS15 talk: CLICdp detector model Nikiforos Nikiforou


Tracking and software

For CDR used SiD tracking, no Kalman filter. -> implement extended ILD


vertex tracking software


Several cellular automaton patternrecognition strategies being developed

Validation, improvements ongoing (single muons -> ttbar events)

- New detector model being developed entirely in DD4HEP
- common toolkit for detector description for simulation, visualization, reconstruction.
 Current work is interfacing with established ILCSOFT reconstruction software

Pandora particle
 flow algorithm
 continues to be refined

LCWS15 talks:
Track reconstruction
for the CLIC full
silicon tracker
Rosa Simoniello

Track Reconstruction Frank Gaede

DD4HEP-based reconstruction Nikiforos Nikiforou

The CLICdp detector model implementation Marko Petric

ILCDirac: status & plans; Marko Petric

Status of the Pandora particle flow algorithm John Marshall

Photon reconstruction using Pandora
Boruo Xu

CLIC Physics

CLIC foreseen as a staged machine:

Stage 1: precision SM physics

Higgs and top

Energies of subsequent stages motivated by physics

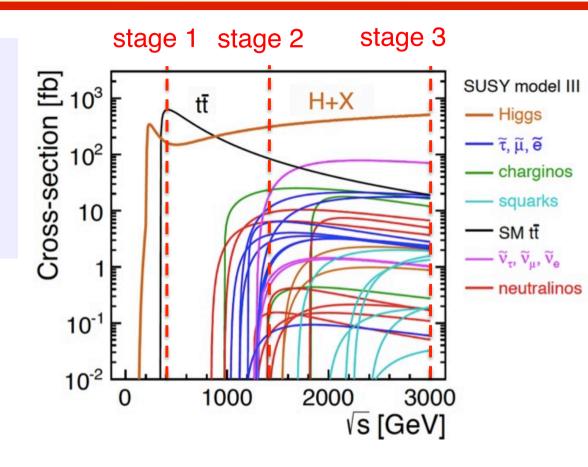
unique for high-precision

-> considered optimum energy for first stage

HZ production

$$\sqrt{s} \sim 250-450 \text{ GeV}$$

Top at threshold

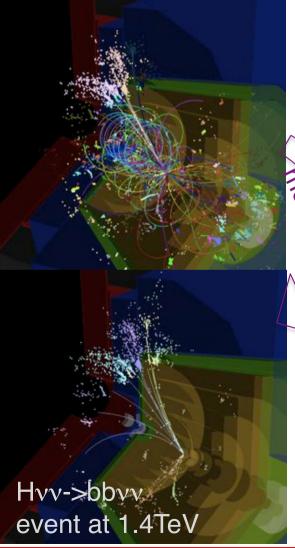

$$\rightarrow \sqrt{s} > 350 \text{ GeV}$$

Top pair production

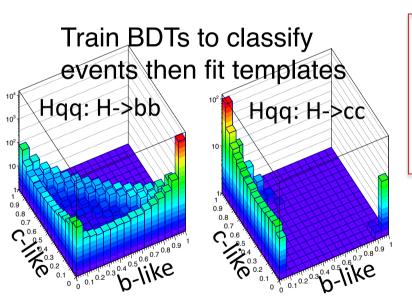
$$\rightarrow \sqrt{s} > 360 \text{ GeV}$$

Recoil mass (HZ, Z->qq)

$$\rightarrow \sqrt{s} < 400 \text{ GeV}$$


√s ~ 380 GeV

for first stage is good for both HZ and top physics programme – chosen as new baseline



Higgs -> bb/cc/gg

Separation of bb/cc/gg possible in e+e- final state using excellent detector

New analyses at 3TeV, 1.4TeV, 350GeV 2jets+missing energy also 2 jets + 2 leptons, and 4 jets

LCWS15 talk:

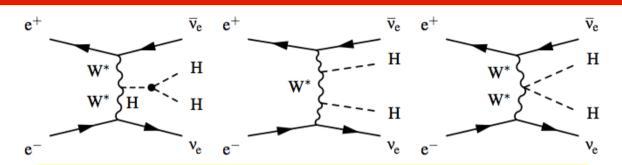
Physics potential for the measurement of hadronic Higgs decays and the Higgs mass at high-energy CLIC Philipp Roloff

LCWS15 talk:

H->bb/cc/gg at 350GeV at CLIC, Marco Szalay

Analyses replace earlier versions that had missing e_γ->X, γ_γ->X backgrounds

work in progress indicative

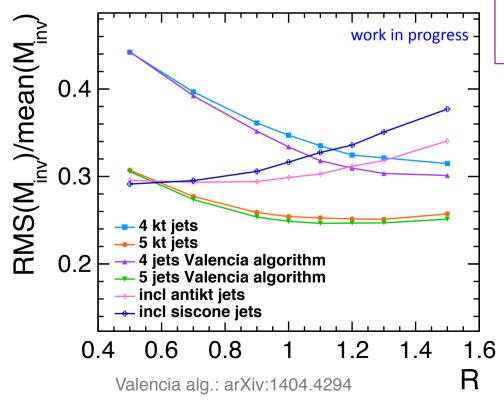

 $\Delta(\sigma x Br(H->bb))$ <1%

 $\Delta(\sigma x Br(H->cc))$ 6–10%

 $\Delta(\sigma xBr(H->gg))$ 4–5%

Higgs self-coupling

Measure Higgs self-coupling g_{HHH} at 3 TeV; simultaneous extraction with g_{HHWW}


Looking at HHvv -> bbbbvv 4-jet final state, require 4 b-tag jets

-> systematic studies of clustering and jet algorithm to optimize for energy flow

optimize reconstructed *m*(bb)

-> use 5-jet reconstruction with $k_{\rm T}$ or Valencia algorithm, R=1.1

MVA trained on event variables

indicative $\Delta(\sigma(HH)) \sim 10-20\%$ (2ab⁻¹)

LCWS15 talk:

Measurement of double

Higgs production at CLIC

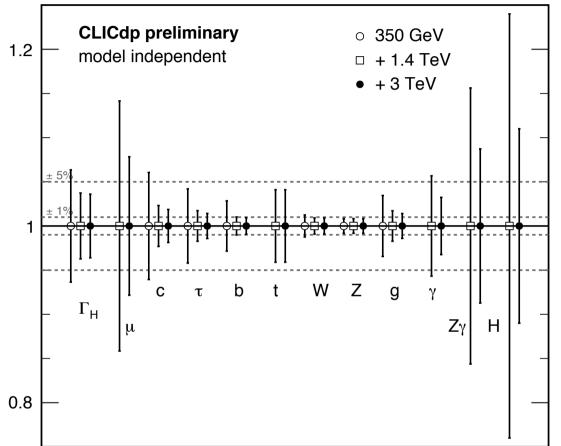
Rosa Simoniello

LCWS15 talk:

Measurement of the Higgs to
EW boson decays at CLIC
Ivanka Bozovic-Jelisavcic

Comprehensive Higgs studies

			Statistical precision		
Channel	Measurement	Observable	350 GeV	1.4 TeV	3.0 TeV
			$500 \; {\rm fb}^{-1}$	1.5 ab^{-1}	$2.0 {\rm \ ab}^{-1}$
ZH	Recoil mass distribution	$m_{ m H}$	120 MeV	_	_
ZH	$\sigma(HZ) \times BR(H \to invisible)$	$\Gamma_{ m inv}$	0.6%	_	_
ZH	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$	tbd	_	_
$Hv_e\overline{v}_e$	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$	_	40 MeV*	33 MeV*
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{Z} \to \ell^+ \ell^-)$	$g_{ m HZZ}^2$	4.2%	_	_
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{Z} \to \mathrm{q}\overline{\mathrm{q}})$	$g_{ m HZZ}^2$	1.8%	_	_
ZH	$\sigma(HZ) \times BR(H \to b\overline{b})$	$g_{ m HZZ}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	$0.85\%^*$	_	_
ZH	$\sigma(H+X) \times BR(H \to c\overline{c})$		$10.7\%^*$	_	_
ZH	$\sigma(H+X) \times BR(H \to gg)$		$4.1\%^*$	_	_
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{\tau}^+ \mathrm{\tau}^-)$	$g_{ m HZZ}^2 g_{ m H au au}^2/\Gamma_{ m H}$	6.2%	_	_
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{WW}^*)$	$g_{ m HZZ}^2 g_{ m HWW}^2/\Gamma_{ m H}$	$5.1\%^*$	_	_
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} o \mathrm{ZZ}^*)$	$g_{ m HZZ}^2 g_{ m HZZ}^2 / \Gamma_{ m H}$	tbd	_	_
$H\nu_e\overline{\nu}_e$	$\sigma(H\nu_{e}\overline{\nu}_{e})\times\textit{BR}(H\to b\overline{b})$	$g_{ m HWW}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	$1.8\%^*$	$0.4\%^*$	$0.3\%^*$
$H\nu_e\overline{\nu}_e$	$\sigma(H\nu_{e}\overline{\nu}_{e}) \times BR(H \to c\overline{c})$	$g_{ m HWW}^2 g_{ m Hcc}^2/\Gamma_{ m H}$	_	$6.1\%^{*}$	$6.9\%^*$
$H\nu_{e}\overline{\nu}_{e}$	$\sigma(H\nu_{e}\overline{\nu}_{e})\times\textit{BR}(H\rightarrow gg)$		_	$5.0\%^*$	$4.3\%^*$
$Hv_e\overline{v}_e$	$\sigma(\mathrm{H} \nu_{\mathrm{e}} \overline{\nu}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} o \tau^{+} \tau^{-})$	$g_{ m HWW}^2 g_{ m H au au}^2/\Gamma_{ m H}$	_	4.2%	4.4%
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{H} \nu_{\mathrm{e}} \overline{\nu}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mu^{+} \mu^{-})$	$g_{ m HWW}^2 g_{ m H\mu\mu}^2/\Gamma_{ m H}$	_	38%	25%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{H} \mathrm{v_e} \overline{\mathrm{v}_\mathrm{e}}) imes \mathit{BR}(\mathrm{H} o \gamma \gamma)$		_	15%	$10\%^\dagger$
$H \nu_e \overline{\nu}_e$	$\sigma(H\nu_{\rm e}\overline{\nu}_{\rm e}) \times \mathit{BR}(H \to Z\gamma)$		_	42%	$28\%^\dagger$
$Hv_e\overline{v}_e$	$\sigma(Hv_e\overline{v}_e) \times BR(H \to WW^*)$	$g_{ m HWW}^4/\Gamma_{ m H}$	tbd	$1.1\%^*$	$0.8\%^\dagger$
$H v_e \overline{v}_e$	$\sigma(H\nu_{\rm e}\overline{\nu}_{\rm e}) \times \mathit{BR}(H \to ZZ^*)$	$g_{ m HWW}^2 g_{ m HZZ}^2/\Gamma_{ m H}$	_	5.6%	$3.7\%^\dagger$
$\mathrm{He}^{+}\mathrm{e}^{-}$	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	_	1.8%	$1.8\%^\dagger$
tīΗ	$\sigma(t\overline{t}H) \times BR(H \to b\overline{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	_	8%	tbd
$HH\nu_{e}\overline{\nu}_{e}$	$\sigma(\mathrm{HH} u_{\mathrm{e}} \overline{ u}_{\mathrm{e}})$	$g_{ m HHWW}$	_	7%	3%
$HH\nu_e\overline{\nu}_e$	$\sigma(\mathrm{HH} u_{\mathrm{e}} \overline{ u}_{\mathrm{e}})$	λ	_	32%	16%
$HHv_{e}\overline{v}_{e}$	with -80% e ⁻ polarization	λ	_	24%	12%


- -> measure many processes at all energy stages
- Combined fit of all the measurements -> extract fundamental parameters

analyses all complete for this workshop

Comprehensive Higgs studies

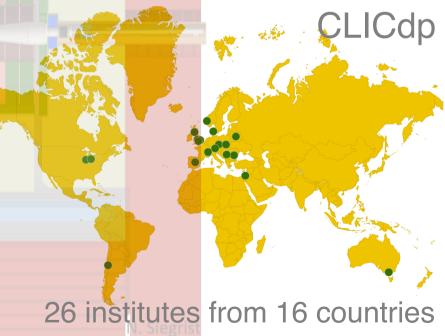
Each stage contributes significantly: first stage provides crucial model-independent Z coupling measurement, and couplings to most fermions and bosons; higher stages improve them, and add t, μ , γ couplings

- ◆ Large statistics at high energies allow unique measurements and high precision!
- ◆ Comprehensive 'Higgs Physics at CLIC' paper has been in preparation for a while, and final analyses completed for this workshop -> expect to see it imminently!
- Planning to focus on BSM and top physics in the next period

Summary

- Many optimization studies -> converging on a new detector concept
- Many advances in detector R&D towards demonstrators for main technical challenges
- Common software tools being developed
- Physics studies ongoing
- New collaborators welcome!

LCWS CLICdp session: Thursday 8.30am – Vertex and tracker design optimization

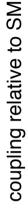

CLIC workshop: 18-22 Jan 2016 @CERN

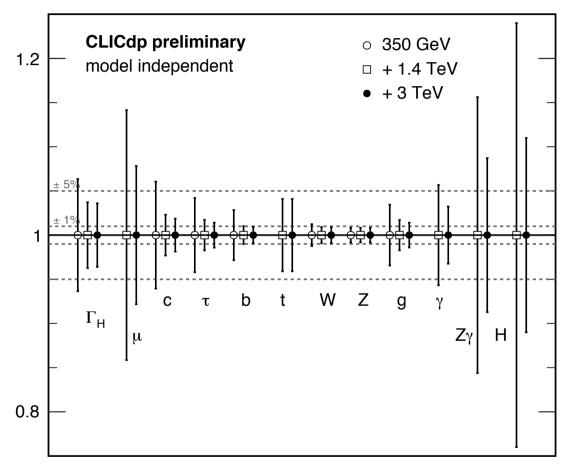
https://indico.cern.ch/event/449801/

Many thanks to all who provided input:

Dominik Dannheim, Daniel Hynds, Aharon Levy, Lucie Linssen,

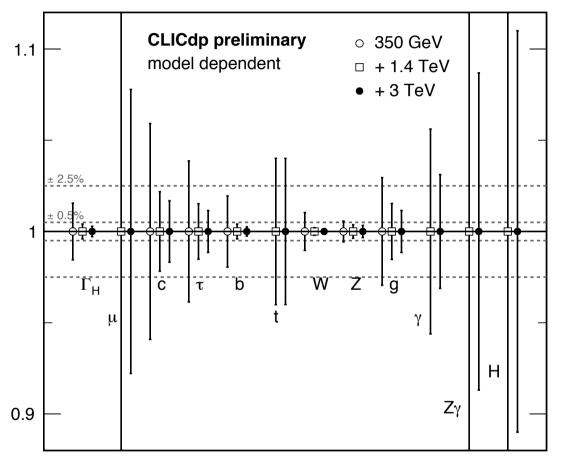
John Marshall, Nikiforos Nikiforou, Andreas Nurnberg, Sophie Redford, Philipp Roloff, Rosa Simoniello, Frank Simon, and others




Backup

LCWS15 Aidan Robson 20/19

Comprehensive Higgs studies


Preliminary

_	Fielininary				
Parameter	Relative precision				
	500fb ⁻¹	+1.5ab ⁻¹	+2ab ⁻¹		
	350GeV	+1.4TeV	+3TeV		
$g_{\sf HZZ}$	0.8%	0.8%	0.8%		
g_{HWW}	1.2%	0.9%	0.9%		
$oldsymbol{g}_{Hbb}$	2.8%	1.0%	0.9%		
$oldsymbol{g}_{Hcc}$	6.1%	2.3%	1.9%		
$g_{ ext{H} au au}$	4.2%	1.7%	1.4%		
$oldsymbol{\mathcal{G}}$ Ημμ	_	14.1%	7.8%		
g_{Htt}	_	4.1%	<4.1%		
g_{Hgg}	3.4%	1.7%	1.4%		
$oldsymbol{g}_{H\gamma\gamma}$	_	5.7%	3.2%		
$arGamma_{H}$	6.3%	3.7%	3.6%		

Comprehensive Higgs studies

Preliminary

	1 ICIIIIIIai y				
Parameter	Relative precision				
	500fb ⁻¹	+1.5ab ⁻¹	+2ab ⁻¹		
	350GeV	+1.4TeV	+3TeV		
K_{HZZ}	0.6%	0.4%	0.3%		
κ_{HWW}	1.0%	0.2%	0.1%		
κ_{Hbb}	1.9%	0.4%	0.3%		
κ_{Hcc}	5.9%	2.2%	1.7%		
$\mathcal{K}_{H au au}$	3.9%	1.5%	1.1%		
$\mathcal{K}_{H\mu\mu}$	_	14.1%	7.8%		
κ_{Htt}	_	4.0%	<4.1%		
K_{Hgg}	2.9%	1.5%	1.1%		
$\kappa_{H\gamma\gamma}$	_	5.6%	3.1%		
$arGamma_{Hmd.derived}$	1.6%	0.4%	0.3%		