Higgs/EWSB Summary @ LCWS15

Timothy Barklow, Nathaniel Craig, Sven Heinemeyer, Heather Logan, Shinya Kanemura, Markus Klute, Aidon Robson, Junping Tian

20 talks in Higgs/EW & joint Higgs-BSM sessions

2 LHC:	Caterina VERNIERI, Pilar CASADO
7 ILC:	Masakazu KURATA, Tomohisa OGAWA, Timothy BARKLOW, Aliakbar EBRAHIMI, Jacqueline YAN, Michele FAUCCI GIANNELLI, Graham WILSON
4 CLIC:	Rosa SIMONIELLO, Ivanka BOZOVIC-JELISAVCIC, Marco SZALAY, Philipp ROLOFF
7 Theory:	Kazuhiro ENDO, Mitsuru KAKIZAKI, Sven HEINEMEYER (2), Shinya KANEMURA, Cheng-Wei CHIANG, Mariko KIKUCHI

*joint Higgs-Top session will be summarised by F.Simon

pp ->HH search and λ_{HHH} @ LHC C. Vernieri

Non-resonant search are far from SM sensitivity (>50x SM)

e+e-—>ZHH and λ_{HHH} @ ILC M. Kurata

			• 1
$\lambda_{HHH}/\lambda_{HHH}$	500 GeV	+ 1 TeV]
Snowmass	46%	13%	j
H20	27%	10%	•]
			•]
1.0 80.0 90.0 90.0 90.0 90.0 90.0 90.0 90	ZHH (IIbbbb combined M(I evis = 490 Ge lcos(θmiss)I = ZHH before fit ZHH after fit 50) +11) =V 0.89 100 150 M(H1)	200 [GeV]

- main update: kinematic fitting with ISR treatment, neutrino recover in bjet, asymmetric JER in b-jet
- HH—>bbbb: ~20% improvement
- HH—>bbWW*: 6-15% improvement

e+e-—>vvHH and λ_{HHH} @ CLIC R. Simoniello

1.4 TeV (1.5 ab ⁻¹)	+3 TeV (2 ab ⁻¹)	
21%	10%	

- Re-analysis of the double Higgs production has started
- Divide analysis in sub-channels:

 \Box HHvv->bbbbvv

 $\Box HHvv->bbWWvv->bbqqqqvv$

HHvv—>bbbbvv @ 3 TeV

ongoing

L [ab ⁻¹]	# sig exp	# bkg exp	BDTG cut	S/V(S+B)	# sig	# bkg
2	353	2737527	0.9541	7.06	108	127

HHνν—>bbWWνν@1.4 TeV

L [ab ⁻¹]	# sig exp	# bkg exp	BDT cut	S/V(S+B)	# sig	# bkg
1.5	21	45000	0.2047	0.71	2	8

λннн @ Circular Collider

T. Barklow

CEPC Higgs Self Coupling Measurement at Ecm=240 GeV

M. McCullough, arXiv:1312.3322

 g_{hZZ} fixed to SM value ($\delta_z = 0$) g_{hhZZ} fixed to SM value

$$\Rightarrow \delta_{H} = \frac{\delta_{\sigma}^{240}}{0.014} = \frac{0.0051}{0.014} = 36\%$$

$$\delta_{\sigma}^{240} = 100 \left(2\delta_Z + 0.014\delta_h \right) \%$$

Examples of BSM physics with $\delta_z \neq 0$:

f = decay constant of pNGB Higgs

coupling deviation contributes to precision electroweak e-LHC constraints as good as reach of LHC Higgs $\sim \delta \kappa_V \lesssim 5\%$ coupling measurements

(Not-so) Hidden New Physics

 Thus, due to extremely high precision measurements, in this very challenging scenario an e⁺e collider offers the possibility of discovering the indirect effects of hidden particles.

• Cross section at CEPC modified by: $\delta \sigma_{Zh} = \frac{|c_{\phi}|^2}{8\pi^2} \frac{v^2}{m_h^2} \left(1 + \frac{1}{4\sqrt{\tau_{\phi}(\tau_{\phi} - 1)}} \log \left[\frac{1 - 2\tau_{\phi} - 2\sqrt{\tau_{\phi}(\tau_{\phi} - 1)}}{1 - 2\tau_{\phi} + 2\sqrt{\tau_{\phi}(\tau_{\phi} - 1)}}\right]\right)$

where $\tau_{\phi}=m_h^2/4m_{\phi}^2$ and $\delta\sigma_{Zh}=(\sigma_{Zh}-\sigma_{Zh}^{\rm SM})/\sigma_{Zh}^{\rm SM}$

Neutral fermionic partners

f sets mass scale for neutral top partners; definitive and test of "neutral" naturalness.

Results: Inert Doublet

6

comment by M.Peskin: δ_Z can come from anything!

λ_{HHH} in scale-invariant model for EWSB K. Endo

leptonic recoil mass analysis @ ILC J. Yan

		ECM=250	GeV						ec_err	Mass_	err [MeV]		
		(2 ab-1	I)			left		1	.13%		15		
						right		2	.18%		30		
					combined			1	.00%		13		
		ECM=350	GeV					>	ksec	n	nass		
		(0.2 ab-	·1)			left		5	.23%	-	151		
						right		10).15%		299		
					CC	ombined		4	.65%	-	135		
		ECM=500	GeV)	KSEC	n	nass		
		(4 ab-1	I)			left		2	.92%		275		
						right		3	.12%		316		
					CC	ombined		2	.13%		207		
		All chanr	nels)	KSEC	n	nass		
		(full H20	run)					0	.89%		13		Sec. 1
		$\mathrm{H} \to \mathrm{X}\mathrm{X}$		bb		cc		gg	au au	WW*	ZZ^*		$\gamma\gamma$
	Le	epton Finder		93.709	%	93.69%	6	93.4%	93.99%	94.01%	93.74%	93	3.74%
Ì	Lepto	on ID+PreCu	ıts	92.16	%	92.11%	6	91.8%	92.36%	92.33%	92.21%	92	2.01%
	M_{inv}	€[73, 120] G	eV	90.14	76	90.27%	6	89.89%	90.38%	90.27%	90.38%	90).16%
	$P_{t,dl}$	∈[10, 70] Ge	V	89.94	76	90.08%	6	89.68%	90.18%	90.04%	90.16%	89	9.99%
	P_{t}	$_{sum} < 6 \text{ GeV}$		89.92	76	90.06%	6	89.67%	90.03%	90.01%	90.13%	89	0.34%
	co	$ \theta_{miss} < 0.98$	1	89.92	76	90.06%	ó	89.67%	90.02%	90.01%	90.12%	89	9.32%
	$ \cos\theta_{dl} < 0.90$ 8			83.249	%	83.12%	6	82.89%	83.29%	83.35%	83.53%	82	2.76%
	TMVA 79.48% 79			79.20%	ó	78.93%	79.36%	79.36%	79.49%	78	8.87%		
	M_{rec}	∈[110, 155] G	leV	78.94	%	78.67%	0	78.40%	78.82%	78.84%	79.02%	78	3.30%
	Γ	E_{CM}	250) GeV			3	350 GeV		500 GeV	V		
		llH	μ^+	$\mu^{-}X$	e	$+e^-X$		$\mu^+\mu^- X$	$\mathrm{e^+e^-}X$	$\mu^+\mu^-X$	e+e-2	X	
		syst. error	0.	13%	(0.43%		0.13%	0.34%	0.16%	0.13%	6	

8

proofed to be model independent, ~0.1% for Zµµ, ~0.4% for Zee

direct mass measurement using H->bb @ ILC

previous TESLA study

	Δm_H in MeV				
Decay Mode	120	150	180		
$ZH \rightarrow l^+ l^- q \bar{q}$	85	100	-		
$ZH ightarrow q \overline{q} q' \overline{q}'$	45	170	-		
$ZH \rightarrow I^+I^-WW$	-	90	80		
ZH ightarrow q ar q WW	-	100	150		
Combined	40	65	70		

> Redo the analysis of $ZH \rightarrow q\bar{q}q'\bar{q}'$ using modern simulation for two center-of-mass energies:

A. Ebrahimi

- $\sqrt{s} = 350 \text{GeV}$
- $\sqrt{s} = 500 GeV$
- > Try to assess systematics of the measurement

impact of overlay

investigating determination of JER; ongoing

H->bb/cc/gg @ CLIC

M. Szalay

using single BDT can slightly improve H—>bb

$H \rightarrow WW^* \& H \rightarrow ZZ^* @ CLIC$ I. BOZOVIC-JELISAVCIC

 $(HZ@350GeV) H \rightarrow WW^*, W \rightarrow q_1q_2$

- 500 fb^{-1}
- Signature: 4-jet+21 or 6jet
- BR(H→WW* →4 jets)≈10%
- Z->11 ~700 events (~1%)
- $Z \rightarrow q\bar{q}$ ~5000 events (~7%)
- 4jets+21 events: B/S≈10³
- 6-jet events: B/S≈10²

- 1.5 ab⁻¹
 Signature: E_{miss} plus(4-jet or 2-jet+21)
- BR(H \rightarrow ZZ* \rightarrow 4 jets) \approx 1.4%
- BR(H \rightarrow ZZ* \rightarrow 2jets + 21) \approx 0.4%
 - ~ 5200 4-jet events
 - ~ 1500 (2-jet + 21) events
- 4-jet events: B/S≥10⁴
- (2-jet+21) events: $B/S \ge 10^5$

	$\sigma(HZ) \times BR(H \to WW^* \to qqq)$	<i>]q</i>)			$\sigma(Hv_e \overline{v}_e) \times BR(H \to ZZ^*)$	
$Z \rightarrow q\bar{q}$		$Z \rightarrow e^+ e^-$	$Z \rightarrow \mu^+ \mu^-$	$ZZ \rightarrow qqqq$		$ZZ \rightarrow qqll$
29 %	Signal efficiency	42 %	55%	20%	Signal efficiency	28%
1328	No. signal events	95	125	1031	No. signal events	425
5.9%	$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)} = \frac{\sqrt{S+B}}{S}$	16.1 %	13.1%	17.7%	$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)} = \frac{\sqrt{S+B}}{S}$	5.6%

anomalous HVV coupling @ ILC

T. Ogawa

b-tilde ~ O(0.01) —> very sensitive test to CP odd mixture

mw measurement from threshold scan using G. Wilson polarised beams @ ILC

complementarity between ILC, CEPC & FCC-ee

T. Barklow

G20	CEPC	ILC+CEPC	H20	ILC	FCC-ee	ILC+FCC-ee
Δg_{HZZ}	$0.26\% \Rightarrow$	0.22%	Δg_{HZZ}	0.31%	0.19%	0.16%
$\Delta g_{\scriptscriptstyle HWW}$	1.22% ⇒	0.38% *	$\Delta g_{_{HWW}}$	0.38%	0.35%	0.22%
$\Delta g_{_{Hbb}}$	1.30% ⇒	0.68%	$\Delta g_{_{Hbb}}$	0.60%	0.52%	0.38%
$\Delta g_{_{H au au}}$	1.44% ⇒	0.88%	$\Delta g_{_{H au au}}$	0.89%	0.63%	0.49%
$\Delta g_{_{Hgg}}$	1.53% ⇒	0.97%	$\Delta g_{_{Hgg}}$	0.92%	0.85%	0.61%

ILC +CEPC Summary

ILC helps CEPC:

- A_{LR} measurement and top mass
- Precise g_{HWW} measurement reduces errors on all Higgs couplings
- Top Yukawa coupling
- ILC σ (ZHH) measurement (and others I assume) help interpret precision CEPC σ (ZH) meas.
- New particle searches at 500 GeV

• CEPC helps ILC:

- Many EW precision measurements: M_Z , Γ_Z , α_S , $N\nu$, MW, ...
- Precise g_{HZZ} measurement reduces errors on all Higgs couplings
- $\circ~$ Much better meas. of Higgs invisible width, BSM decays, rare decays such as $\gamma\gamma$ and $\mu\mu$
- $\,\circ\,$ In general, CEPC gives ILC more flexibility to concentrate on higher E_{cm} running.

CEPC+ILC combination helps the particle physics community:

- Higgs Z coupling error $\Delta g_{HZ} = 0.2\%$
- Higgs W coupling error $\Delta g_{WW} = 0.3\%$
- Higgs b coupling error $\Delta g_{bb} = 0.5\%$
- Higgs self coupling error $\Delta g_{HHH} = 22\%$

ILC + FCC-ee Summary

ILC helps FCC-ee:

- The 0.25% measurement of $\sigma(vvh)XBR(H\rightarrow bb)$ reduces errors on all Higgs couplings
- The 2.4% Top Yukawa coupling measurement from ttH production improves upon the 13% measurement from the tt threshold scan.
- $^\circ\,$ ILC $\sigma(ZHH)$ measurement provides a 27% tree-level determination of the Higgs self-coupling, and could help clarify a Higgs self-coupling interpretation of the precision FCC-ee $\sigma(ZH)$ measurement.

FCC-ee helps ILC:

- Precision measurement of g_{HZZ} and various σXBR at 240 GeV help turn the ILC 0.25% measurement of $\sigma(vvh)XBR(H\rightarrow bb)$ into $\Delta g_{WW} = 0.22\%$
- Much better meas. of Higgs invisible width, BSM decays, rare decays such as $\gamma\gamma$ and $\mu\mu$ Note: $\sum BR_i = 1$ can be used to improve all coupling errors if $\Delta BR(H \rightarrow BSM) < 1\%$
- Unique access to Higgs coupling to 1st generation fermions.

• FCC-ee+ILC combination helps the particle physics community:

- Higgs Z coupling error $\Delta g_{HZ} = 0.16\%$
- Higgs W coupling error $\Delta g_{WW} = 0.22\%$
- $\,\circ\,\,$ Higgs b coupling error $\Delta g_{bb}=0.38\%$
- Higgs self coupling error $\Delta g_{HHH} = 20\%$

Ex.>> $\Delta \kappa_z VS \Delta \kappa_b$ in **HSM 2HDM(Type I) IDM**

M. Kakizaki Indirect discovery reach of the additional MSSM Higgs bosons by precision measurements at future lepton colliders

- There are two new mass scales in the MSSM: m_{SUSY}, m_A
 - In the limit of large $\mu \sim M_3 \sim A_t \sim m_{\rm SUSY}$ with m_A fixed

$$g_{hb\bar{b}} \simeq \frac{gm_b}{\sqrt{2}m_W} \frac{\sin \alpha}{\cos \beta} \left[1 - \Delta_b (1 + \cot \alpha \cot \beta) \right]$$

$$\Delta_b \simeq \left(\frac{2\alpha_s}{3\pi} \frac{\mu M_3}{m_{\rm SUSY}^2} + \frac{\lambda_t^2}{16\pi^2} \frac{\mu A_t}{m_{\rm SUSY}^2} \right) \tan \beta$$

- SUSY loop corrections do not decouple for small m_A and are enhanced for large $\tan \beta$, (in sharp contrast to the type-II two-Higgs-doublet model)

ILC 500 LumiUp:

60

50

10

500

1000

 $\underset{_{0}}{\overset{_{0}}{\text{tan}}}\beta$

3000

500

1500

m_A [GeV]

2000

2500

ILC: $\sqrt{s} = 1$ TeV, L = 2500 fb⁻¹

1500

m₄ [GeV]

2000

2500

ILC 1000 LumiUp:

1000

3000

Unitarity bounds in general 2HDM

S. Kanemura

How we constrain extended Higgs sectors ?

Theoretical Bound

Unitarity Triviarity Vacuum stability, ...

Experimental bounds

LEP, Tevatron direct searches LEP/SLC indirect searches LHC direct/indirect searches b→sγ/g-2/EDM/...

Perturbative Unitarity

Lee, Quigg, Thacker (1977)

 $W_L^+W_L^-$ Elastic Scattering $\epsilon_L^\mu = (p, 0, 0, E)$

 $a^{0}(W_{L}^{+}W_{L}^{-} \rightarrow W_{L}^{+}W_{L}^{-}) \approx A E^{4} + B E^{2} + C \quad (E \rightarrow \infty)$

e.g. for K_V=0.99, if no second Higgs is found below 700 GeV,the 2HDM is excluded

Phenomenology of Higgs boson in the Georgi-Machacek model

GEORGI-MACHACEK MODEL Normalize all couplings to those for SM Higgs boson (V = W,Z; F = quarks):Georgi, Machacek 1985 Chanowitz, Golden 1985 $\kappa_F = rac{g_{arphi FF}}{g_{hFF}^{ m SM}} \;,\; \kappa_V = rac{g_{arphi VV}}{g_{hVV}^{ m SM}}$ • The Higgs sector includes SM doublet field ϕ (2,1/2) and group factor that makes it triplet fields χ (3,1) and ξ (3,0) ossible for the entire factor $\Phi = \left(\begin{pmatrix} \phi^{0*} & \phi^{+} \\ \phi^{-} & \phi^{0} \end{pmatrix}, \quad \Delta = \left(\begin{pmatrix} \chi^{0*} & \xi^{+} & \chi^{++} \\ \chi^{-} & \xi^{0} & \chi^{+} \\ \chi^{--} & \xi^{-} & \chi^{0} \end{pmatrix} \right)$ to be greater than Higgs κ_F mixing required) $\cos \alpha$ $\sin\beta\cos\alpha - \sqrt{\frac{3}{2}\cos\beta\sin\alpha}$ h $\sin\beta$ suppressed by α $\sin \alpha$ $\sin\beta\sin\alpha + \sqrt{\frac{3}{2}\cos\beta\cos\alpha}$ $\sin\beta$ transformed under SU(2)_L×SU(2)_R as H_3^0 $i\eta_f \cot \beta$ gauge-phobic $\Phi \rightarrow U_L \Phi U_R^{\dagger}$ and $\Delta \rightarrow U_L \Delta U_R^{\dagger}$ $\kappa_W = -\frac{\cos\beta}{\sqrt{3}} \text{ and } \kappa_Z = \frac{2\cos\beta}{\sqrt{3}}$ $H^0_{\mathbf{F}}$ 0 guark-phobic with $U_{L,R} = \exp(i \theta_{L,R^a} T^a)$ and T^a being corresponding $\eta_f = +1$ for up-type quarks and -1 for down-type quarks and charged leptons. SU(2) generators. independent of α

- With SU(2)_L×SU(2)_R-symmetric Higgs potential and vacuum alignment, GM model preserves custodial symmetry, allows a large v_{Δ} , and possibly has hVV couplings stronger than SM's.
- There is an [approximate] mass degeneracy in each of the 3plet, and 5-plet Higgs representations.
- For large v_∆, VBF processes are useful for searching for exotic GM Higgs bosons, verifying their mass spectrum, and extracting hVV couplings.

C.W. Chiang

Status and prospects for BSM ((N)MSSM) Higgs searches at the LHC

P. Casado

Conclusions

- No evidence for BSM Higgs yet.
- Current searches constrain large parts of parameter space
 - There are still many things to do be done, and many searches that are still starting up.
 - Expect that this will continue to be a hot area in Run-II.
- For the coming months expect early results in high mass searches.
- For Moriond, search of intermediate-high mass Higgs bosons with full 2015 dataset.
- For summer, update with searches sensitive to additional data collected in 2016.

summary

- Higgs analyses at both ILC and CLIC are continuously being updated and improved, some interesting new analyses have started
- complementarity between ILC and circular colliders has been better understood
- the pattern of Higgs coupling deviations can not only discover indirectly new particles, but also fingerprint different models of new physics
- effort of precision theoretical calculations is ongoing and certainly needed to match the experimental precisions
- LHC searches of extra Higgs bosons already constrain large parameter space; would be nice to have studies of similar search at LCs