The X-Files: the BSM ILC Case

Jürgen R. Reuter, DESY

The X-Files: The BSM ILC case

(FALSE) PARADIGM: "Hadron colliders are discovery machines, lepton colliders are precision machines."

first ex positivo hadron colliders:

(FALSE) PARADIGM: "Hadron colliders are discovery machines, lepton colliders are precision machines."

first ex positivo hadron colliders:

precision hadron collider physics

J.R.Reuter

The X-Files: The BSM ILC case

(FALSE) PARADIGM: "Hadron colliders are discovery machines, lepton colliders are precision machines."

J.R.Reuter

The X-Files: The BSM ILC case

(FALSE) PARADIGM: "Hadron colliders are discovery machines, lepton colliders are precision machines."

A) Deep Inelastic Scattering: 1969, SLAC: QCD/Quark Substructure (e⁻ beams)

The X-Files: The BSM ILC case

(FALSE) PARADIGM: "Hadron colliders are discovery machines, lepton colliders are precision machines."

A) Deep Inelastic Scattering: 1969, SLAC: QCD/Quark Substructure (e⁻ beams)

B) Neutral currents: 1973, Gargamelle, CERN: Weak Gauge Structure $(\nu_{\mu} \text{ beams})$

J.R.Reuter

The X-Files: The BSM ILC case

(FALSE) PARADIGM: "Hadron colliders are discovery machines, lepton colliders are precision machines."

A) Deep Inelastic Scattering: 1969, SLAC: QCD/Quark Substructure (e⁻ beams)

B) Neutral currents: 1973, Gargamelle, CERN: Weak Gauge Structure $(\nu_{\mu} \text{ beams})$

C) Charm/tau discovery: 1974/76 SLAC: SM flavor structure $(e^-e^+$ beams)

The X-Files: The BSM ILC case

Not only unexpected...also predicted/partially unpredicted

D) First jet physics in e+e-: 1978, PETRA, DESY: **Gluon discovery** $(e^-e^+$ beams)

J.R.Reuter

The X-Files: The BSM ILC case

Not only unexpected...also predicted/partially unpredicted

D) First jet physics in e+e-: 1978, PETRA, DESY: **Gluon discovery** $(e^-e^+$ beams)

E) B meson oscillations: 1987, ARGUS, DESY: **Top mass > 100 GeV** $(e^-e^+$ beams)

J.R.Reuter

The X-Files: The BSM ILC case

Not only unexpected...also predicted/partially unpredicted

D) First jet physics in e+e-: 1978, PETRA, DESY: **Gluon discovery** $(e^-e^+$ beams)

E) B meson oscillations: 1987, ARGUS, DESY: Top mass > 100 GeV $(e^-e^+$ beams)

F) Electroweak Precision: 1989-96, LEP, CERN: Higgs mass < 200 GeV $(e^-e^+$ beams)

J.R.Reuter

The X-Files: The BSM ILC case

Sp(p̄)S pp̄ @ 0.54 TeV	
Tevatron	
pp @ 1.8,1.96 TeV	
LHC pp @ 7,8,13,14 TeV	
"FCC-hh"	
PP @ 60,80,100 TeV (?)	

J.R.Reuter

Sp(p̄)S pp̄ @ 0.54 TeV	Guaranteed discovery of W and Z	
Tevatron		
pp @ 1.8,1.96 TeV		
LHC		
pp @ 7,8,13,14 TeV		
"FCC-hh"		
PP @ 60,80,100 TeV (?)		

Sp(p̄)S pp̄ @ 0.54 TeV	Guaranteed discovery of W and Z	prepared by many experiments especially v beams
Tevatron		
pp @ 1.8,1.96 TeV		
LHC		
pp @ 7,8,13,14 TeV		
"FCC-hh"		
PP @ 60,80,100 TeV (?)		

Sp(p̄)S pp̄ @ 0.54 TeV	Guaranteed discovery of W and Z	prepared by many experiments especially v beams
Tevatron pp @ 1.8,1.96 TeV	Guaranteed discovery of top	
LHC pp @ 7,8,13,14 TeV		
"FCC-hh" pp @ 60,80,100 TeV (?)		

J.R.Reuter

Sp(p̄)S pp̄ @ 0.54 TeV	Guaranteed discovery of W and Z	prepared by many experiments especially v beams
Tevatron pp @ 1.8,1.96 TeV	Guaranteed discovery of top	prepared by DORIS/SLC/LEP e+e- @ 0.01,0.091 TeV
LHC pp @ 7,8,13,14 TeV		
"FCC-hh" pp @ 60,80,100 TeV (?)		

Sp(p̄)S pp̄ @ 0.54 TeV	Guaranteed discovery of W and Z	prepared by many experiments especially v beams
Tevatron pp @ 1.8,1.96 TeV	Guaranteed discovery of top	prepared by DORIS/SLC/LEP e+e- @ 0.01,0.091 TeV
LHC pp @ 7,8,13,14 TeV	Guaranteed discovery of Higgs (or EWSB)	
"FCC-hh"		
PP @ 60,80,100 TeV (?)		

Sp(p̄)S pp̄ @ 0.54 TeV	Guaranteed discovery of W and Z	prepared by many experiments especially v beams
Tevatron pp @ 1.8,1.96 TeV	Guaranteed discovery of top	prepared by DORIS/SLC/LEP e+e- @ 0.01,0.091 TeV
LHC pp @ 7,8,13,14 TeV	Guaranteed discovery of Higgs (or EWSB)	prepared by SLC/LEP e+e- @ 0.091,0.209 TeV
"FCC-hh"		
PP @ 60,80,100 TeV (?)		

Sp(p)S pp @ 0.54TeV	Guaranteed discovery of W and Z	prepared by many experiments especially v beams
Tevatron pp @ 1.8,1.96 TeV	Guaranteed discovery of top	prepared by DORIS/SLC/LEP e+e- @ 0.01,0.091 TeV
LHC pp @ 7,8,13,14 TeV	Guaranteed discovery of Higgs (or EWSB)	prepared by SLC/LEP e+e- @ 0.091,0.209 TeV
"FCC-hh" PP @ 60,80,100 TeV (?)	no guarantee ??	

Sp(p̄)S pp̄ @ 0.54 TeV	Guaranteed discovery of W and Z	prepared by many experiments especially v beams
Tevatron pp @ 1.8,1.96 TeV	Guaranteed discovery of top	prepared by DORIS/SLC/LEP e+e- @ 0.01,0.091 TeV
LHC pp @ 7,8,13,14 TeV	Guaranteed discovery of Higgs (or EWSB)	prepared by SLC/LEP e+e- @ 0.091,0.209 TeV
"FCC-hh" PP @ 60,80,100 TeV (?)	no guarantee ??	prepared by ILC e+e- @ 0.35,0.5 TeV ??

The X-Files: The BSM ILC case

Conditions for (lepton) collider discoveries

New particle in kinematic reach of your collider

- Example: Charm discovery, electroweakino
- Difficult to predict: might need symmetry, coupling strength, indirect evidence [DM]

New physics in (rare) decays of known particles

- Example: anomalies in rare B decays, anomalies in Higgs decays
- Difficult to predict: needs tremendous technical knowledge of known physics

Deviations within existing interactions

- Solution Example: $e+e- \rightarrow$ hadrons below charm threshold, Z' in contact interactions
- Difficult to predict: needs theoretical hint, experimental hint from somewhere else

Decipher structure of new but known interactions

- Example: gluon discovery (massless carrier of confining theory), Higgs self-interaction
- Has guidance from existing experimental data; correct theory needs to be known

Discovery of new strong interactions

- Example: quark substructure, composite Higgs
- Mostly for non-perturbative physics;

.R.Reuter

The X-Files: The BSM ILC case

The Pillars of Lepton Physics

J.R.Reuter

The X-Files: The BSM ILC case

The Pillars of Lepton Physics

Electroweak vacuum & excitations:

(note: plot under assumptions of NO additional BSM)

J.R.Reuter

The X-Files: The BSM ILC case

Paradigmatic Standard Candle Telescopes

Standard (Model) candles can be used as Telescopes for [indirect] BSM searches

The X-Files: The BSM ILC case

Paradigmatic Standard Candle Telescopes

Standard (Model) candles can be used as Telescopes for [indirect] BSM searches

Search for anomalous Higgs couplings

Talks by S. Gori / M. Peskin

J.R.Reuter

The X-Files: The BSM ILC case

Paradigmatic Standard Candle Telescopes

Standard (Model) candles can be used as Telescopes for [indirect] BSM searches

Search for anomalous Higgs couplings

Talks by S. Gori / M. Peskin

LCWS 2015, Whistler, 5.11.15

J.R.Reuter

The X-Files: The BSM ILC case

Handle to electroweak symmetry breaking

hhh: Mapping out Higgs potential (only direct access to EWSB using only Higgs)

- □ most promising: $HH \rightarrow bbbb$ and $HH \rightarrow WW^*bb$ [Junping Tian, 2013]
- **500** GeV, 4/ab: $\Delta\lambda / \lambda = 28 \%$

tth: Resolving eminent source of Higgs dynamics (only direct access to EWSB using only Higgs)

if dynamics behind top/Higgs system: tth is the access key

The X-Files: The BSM ILC case

Handle to electroweak symmetry breaking

J.R.Reuter

The X-Files: The BSM ILC case

High-Energy Electroweak Sector

- Vector Boson Scattering: access to New Physics in W, Z selfcoupl. Beyer/JRR/Mönig, arXiv:hep-ph/0604048
- I TeV, I/ ab , full 6-fermion states, P(80% e-, 60% e+), binned likelihood
- Contributing channels: $WW \rightarrow WW$, $WW \rightarrow ZZ$, $WZ \rightarrow WZ$, $ZZ \rightarrow ZZ$

Process	Subprocess	σ [fb]
$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	$WW \rightarrow WW$	23.19
$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	$WW \to ZZ$	7.624
$e^+e^- \rightarrow \nu \bar{\nu} q \bar{q} q \bar{q}$	$V \rightarrow VVV$	9.344
$e^+e^- \rightarrow \nu e q \bar{q} q \bar{q}$	$WZ \to WZ$	132.3
$e^+e^- \rightarrow e^+e^- q\bar{q}q\bar{q}$	$ZZ \rightarrow ZZ$	2.09
$e^+e^- \rightarrow e^+e^- q\bar{q}q\bar{q}$	$ZZ \rightarrow W^+W^-$	414.
$e^+e^- \to b\bar{b}X$	$e^+e^- \to t\bar{t}$	331.768
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	$e^+e^- \rightarrow W^+W^-$	3560.108
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	$e^+e^- \rightarrow ZZ$	173.221
$e^+e^- \to e\nu q\bar{q}$	$e^+e^- \to e\nu W$	279.588
$e^+e^- \rightarrow e^+e^-q\bar{q}$	$e^+e^- \rightarrow e^+e^-Z$	134.935
$e^+e^- \to X$	$e^+e^- \to q\bar{q}$	1637.405

High-Energy Electroweak Sector

- Vector Boson Scattering: access to New Physics in W, Z selfcoupl. Beyer/JRR/Mönig, arXiv:hep-ph/0604048
- I TeV, I/ ab, full 6-fermion states, P(80% e-, 60% e+), binned likelihood
- Contributing channels: WW \rightarrow WW, WW \rightarrow ZZ, WZ \rightarrow WZ, ZZ \rightarrow ZZ

Process	Subprocess	σ [fb]
$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	$WW \rightarrow WW$	23.19
$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	$WW \to ZZ$	7.624
$e^+e^- \rightarrow \nu \bar{\nu} q \bar{q} q \bar{q}$	$V \to VVV$	9.344
$e^+e^- \rightarrow \nu e q \bar{q} q \bar{q}$	$WZ \to WZ$	132.3
$e^+e^- \rightarrow e^+e^- q\bar{q}q\bar{q}$	$ZZ \rightarrow ZZ$	2.09
$e^+e^- \rightarrow e^+e^- q\bar{q}q\bar{q}$	$ZZ \rightarrow W^+W^-$	414.
$e^+e^- \to b\bar{b}X$	$e^+e^- \to t\bar{t}$	331.768
$e^+e^- \to q\bar{q}q\bar{q}$	$e^+e^- \rightarrow W^+W^-$	3560.108
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	$e^+e^- \rightarrow ZZ$	173.221
$e^+e^- \to e\nu q\bar{q}$	$e^+e^- \to e\nu W$	279.588
$e^+e^- \rightarrow e^+e^-q\bar{q}$	$e^+e^- \rightarrow e^+e^-Z$	134.935
$e^+e^- \to X$	$e^+e^- \rightarrow q\bar{q}$	1637.405

* Interpretation as limits on Electroweak Resonances:

Spin	I = 0	I = 1	I=2
0	1.55	_	1.95
1	—	2.49	_
2	3.29	-	4.30

Spin	I = 0	I = 1	I = 2
0	1.39	1.55	1.95
1	1.74	2.67	—
2	3.00	3.01	5.84

- * Results for I TeV, but very good discovery potential already at 500 GeV
- * No final conclusion on LHC reach yet:

Alboteanu/Kilian/JRR, 0806.4145; Kilian/Ohl/JRR/Sekulla, 1408.6207; 1511.00022; in prep. for ILC1000+CLIC

* Probably LC with I-3 TeV and polarization outweighs I4-30 TeV pp [longitudinal/transversal!!]

J.R.Reuter

The X-Files: The BSM ILC case

- Assumption: weakly interacting particle χ
- ee $\rightarrow \chi \chi$ invisible, use bremsstrahlung:

ee $\rightarrow \chi \chi \gamma$ (analogous to LHC: pp $\rightarrow \chi \chi j$)

• Irreducible backgrounds: ee $\rightarrow \nu\nu\gamma$,

 $ee \rightarrow ee\gamma$ with ee lost in the beampipe

 Polarisation to suppress backgrounds: W exchange killed a lot by P(e+,e-) Bartels/Berggren/List: arXiv: 1206.6639

- Assumption: weakly interacting particle χ
- ee $\rightarrow \chi \chi$ invisible, use bremsstrahlung:

ee $\rightarrow \chi \chi \gamma$ (analogous to LHC: pp $\rightarrow \chi \chi j$)

• Irreducible backgrounds: ee $\rightarrow \nu\nu\gamma$,

 $ee \rightarrow ee\gamma$ with ee lost in the beampipe

- Polarisation to suppress backgrounds: W exchange killed a lot by P(e+,e-) Bartels/Berggren/List: arXiv: 1206.6639
- Veto from low-angle calorimeter hits against radiative Bhabha
- Search for signals in the photon recoil spectrum

The X-Files: The BSM ILC case

- Assumption: weakly interacting particle χ
- ee $\rightarrow \chi \chi$ invisible, use bremsstrahlung:

ee $\rightarrow \chi \chi \gamma$ (analogous to LHC: pp $\rightarrow \chi \chi j$)

• Irreducible backgrounds: ee $\rightarrow VVY$,

 $ee \rightarrow ee\gamma$ with ee lost in the beampipe

- Polarisation to suppress backgrounds: W exchange killed a lot by P(e+,e-) Bartels/Berggren/List: arXiv: 1206.6639
- Veto from low-angle calorimeter hits against radiative Bhabha
- Search for signals in the photon recoil spectrum

* Vector operator: "spin-independent"
* Axial-vector operator: "spin-dependent"

LHC accesses higher masses, ILC lower cross sections (few caveats)

CMS-PAS EXO-12-048; arXiv:1307.5327

J.R.Reuter

The X-Files: The BSM ILC case

- Assumption: weakly interacting particle χ
- ee $\rightarrow \chi \chi$ invisible, use bremsstrahlung:

ee $\rightarrow \chi \chi \gamma$ (analogous to LHC: pp $\rightarrow \chi \chi j$)

• Irreducible backgrounds: ee $\rightarrow VVY$,

 $ee \rightarrow ee\gamma$ with ee lost in the beampipe

- Polarisation to suppress backgrounds: W exchange killed a lot by P(e+,e-) Bartels/Berggren/List: arXiv: 1206.6639
- Veto from low-angle calorimeter hits against radiative Bhabha
- Search for signals in the photon recoil spectrum

* Vector operator: "spin-independent"
* Axial-vector operator: "spin-dependent"

LHC accesses higher masses, ILC lower cross sections (few caveats)

CMS-PAS EXO-12-048; arXiv:1307.5327

J.R.Reuter

The X-Files: The BSM ILC case

- * e+e-: electroweak production ⇒ allows (more) model-independent searches for EW particles
- * Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)
- * LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad \text{BR}(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = \text{BR}(\tilde{\chi}_{2,3,4}^0 \to Z^0 \tilde{\chi}_1^0) = 1$

- * e+e-: electroweak production ⇒ allows (more) model-independent searches for EW particles
- * Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)
- * LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad \text{BR}(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = \text{BR}(\tilde{\chi}_{2,3,4}^0 \to Z^0 \tilde{\chi}_1^0) = 1$
- LEP chargino search (all decay modes)
- No gaugino-mass GUT relation below line

The X-Files: The BSM ILC case

- * e+e-: electroweak production ⇒ allows (more) model-independent searches for EW particles
- * Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)
- * LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad \text{BR}(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = \text{BR}(\tilde{\chi}_{2,3,4}^0 \to Z^0 \tilde{\chi}_1^0) = 1$
- LEP chargino search (all decay modes)
- No gaugino-mass GUT relation below line
- * LHC projections to 14 TeV (arXiv: 1307.7292) 300 / fb and 3000 / fb

The X-Files: The BSM ILC case

- * e+e-: electroweak production ⇒ allows (more) model-independent searches for EW particles
- * Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)
- * LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad \text{BR}(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = \text{BR}(\tilde{\chi}_{2,3,4}^0 \to Z^0 \tilde{\chi}_1^0) = 1$
- LEP chargino search (all decay modes)
 No gaugino-mass GUT relation below line
 * LHC projections to 14 TeV (arXiv: 1307.7292) 300 / fb and 3000 / fb
 500 GeV e+e- generic searches

The X-Files: The BSM ILC case

* e+e-: electroweak production ⇒ allows (more) model-independent searches for EW particles

* Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)

* LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad BR(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = BR(\tilde{\chi}_2^0 \to Z^0 \tilde{\chi}_1^0) = 1$

- LEP chargino search (all decay modes)
- No gaugino-mass GUT relation below line
- * LHC projections to 14 TeV (arXiv: 1307.7292) 300 / fb and 3000 / fb
- 500 GeV e+e- generic searches
- Upgrade to I TeV covers parameter space

The X-Files: The BSM ILC case

* e+e-: electroweak production ⇒ allows (more) model-independent searches for EW particles

* Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)

* LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad \text{BR}(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = \text{BR}(\tilde{\chi}_2^0 \to Z^0 \tilde{\chi}_1^0) = 1$

- LEP chargino search (all decay modes)
- No gaugino-mass GUT relation below line
- * LHC projections to 14 TeV (arXiv: 1307.7292) 300 / fb and 3000 / fb
- 500 GeV e+e- generic searches
- Upgrade to I TeV covers parameter space

The X-Files: The BSM ILC case

* e+e-: electroweak production ⇒ allows (more) model-independent searches for EW particles

- * Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)
- * LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad BR(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = BR(\tilde{\chi}_2^0 \circ A \to Z^0 \tilde{\chi}_1^0) = 1$
- LEP chargino search (all decay modes)
- No gaugino-mass GUT relation below line
- * LHC projections to 14 TeV (arXiv: 1307.7292) 300 / fb and 3000 / fb
- 500 GeV e+e- generic searches

Upgrade to I TeV covers parameter space

Benchmark searches for degenerate EW-inos

 $\Delta(M) = 1600 \text{ MeV}, M_{\tilde{\chi}_1^0} = 164.2 \text{ GeV}$ Sert et al.: arXiv:1307.3566

 $\Delta(M) = 770 \text{ MeV}, M_{\tilde{\chi}^0_1} = 166.6 \text{ GeV}$

J.R.Reuter

The X-Files: The BSM ILC case

* e+e-: electroweak production ⇒ allows (more) model-independent searches for EW particles

- * Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)
- * LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad BR(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = BR(\tilde{\chi}_{2,2,4}^0 \to Z^0 \tilde{\chi}_1^0) = 1$
- m² [GeV] رود (GeV] (GeV) (G • LEP chargino search (all decay modes) L dt = 20.3 fb⁻¹, 1s=8 TeV ---- Expected limit (±1 σ_e No gaugino-mass GUT relation below line 250 * LHC projections to 14 TeV (arXiv: 1307.7292) 200 300 / fb 3000 / fb and 150 500 GeV e+e- generic searches 100 Upgrade to I TeV covers parameter space 50 Benchmark searches for degenerate EW-inos 350 400 500 $\Delta(M) = 1600 \text{ MeV}, M_{\tilde{\chi}_1^0} = 164.2 \text{ GeV}$ Sert et al.: arXiv:1307.3566 Tet [GeV] $\Delta(M) = 770 \text{ MeV}, M_{\tilde{\chi}_1^0} = 166.6 \text{ GeV}$

SUSY signals: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$, $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ (all s-channel, no t-channel [Higgsino])

The X-Files: The BSM ILC case

Dig out of YY background: tag ISR photon (only moderate 'kick' for signal / accesses bkgd.)

Dig out of YY background: tag ISR photon (only moderate 'kick' for signal / accesses bkgd.)

Select chargino (semi-leptonic mode) vs. neutralino (radiative decay)

The X-Files: The BSM ILC case

+ Dig out of γγ background: tag ISR photon (only moderate 'kick' for signal / accesses bkgd.)

- Select chargino (semi-leptonic mode) vs. neutralino (radiative decay)
- ISR quasi-'scan': linear fits allow to extract masses up to \approx I GeV

Sert et al.: arXiv:1307.3566

J.R.Reuter

LCWS 2015, Whistler, 5.11.15

 $\tilde{\chi}_{\underline{1}}^{\pm} \to \tilde{\chi}_{1}^{0} j j, \tilde{\chi}_{0}^{1} \ell^{\pm} \nu$

 $\chi_2^0 \to \tilde{\chi}_1^0 \gamma$

Dig out of YY background: tag ISR photon (only moderate 'kick' for signal / accesses bkgd.)

- Select chargino (semi-leptonic mode) vs. neutralino (radiative decay)
- ISR quasi-'scan': linear fits allow to extract masses up to \approx I GeV

• Parameter extraction: from E_{π} : $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \sim 100 \text{ MeV}$ and $\mu \sim 4\%$

Sert et al.: arXiv:1307.3566

J.R.Reuter

The X-Files: The BSM ILC case

LCWS 2015, Whistler, 5.11.15

 $\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 j j, \tilde{\chi}_0^1 \ell^{\pm} \nu$

 $\chi_2^0 \to \tilde{\chi}_1^0 \gamma$

Model-Independent Electroweak Searches

- Main advantage of ee machine: perfectly defined initial state, elementary particle collision
- Testbed SUSY: Scan over all NLSP candidates
- Model-independent exclusion/discovery reach in $M_{\rm NLSP} M_{\rm LSP}$ plane
- Examples: $\tilde{\mu}_R$ NLSP

 $\tilde{\tau}_1$ NLSP min. χ sec

Berggren, arXiv:1308.1461

The X-Files: The BSM ILC case

Model-Independent Electroweak Searches

- Main advantage of ee machine: perfectly defined initial state, elementary particle collision
- Testbed SUSY: Scan over all NLSP candidates
- Model-independent exclusion/discovery reach in
 - $M_{\rm NLSP} M_{\rm LSP}$ plane
- Examples: $\tilde{\mu}_R$ NLSP

 $\tilde{\tau}_1$ NLSP min. χ sec

Discover/exclude close to kinematical limit

J.R.Reuter

The X-Files: The BSM ILC case

Model-Independent Electroweak Searches

- Main advantage of ee machine: perfectly defined initial state, elementary particle collision
- Testbed SUSY: Scan over all NLSP candidates
- Model-independent exclusion/discovery reach in
 - $M_{\rm NLSP} M_{\rm LSP}$ plane
- Examples: $\tilde{\mu}_R$ NLSP

 $\tilde{\tau}_1$ NLSP min. χ sec

Discover/exclude close to kinematical limit

Even for sneutrino NLSP Kalinowski/Kilian/JRR/Robens/Rolbiecki, arXiv: 0809.997

J.R.Reuter

The X-Files: The BSM ILC case

- * Other candidates: axion-like particles in strongly-interacting models
- * Prime example: Little Higgs Models

Kilian/Rainwater/JRR, arXiv: hep-ph/0411213, hep-ph/0609119

* Axion-like particles:

- * Other candidates: axion-like particles in strongly-interacting models
- * Prime example: Little Higgs Models

Kilian/Rainwater/JRR, arXiv: hep-ph/0411213, hep-ph/0609119

- * Axion-like particles:
- Gauged U(I) group: $Z' \leftrightarrow Ungauged U(I)$ group: η
- Couples to fermions like pseudoscalar
- $m[\eta] \approx 400 \text{ GeV}$ (at LHC only accessible for $\approx 200 \text{ GeV}$)
- SM singlet, couplings to SM fermion suppressed v / F

- * Other candidates: axion-like particles in strongly-interacting models
- * Prime example: Little Higgs Models

Kilian/Rainwater/JRR, arXiv: hep-ph/0411213, hep-ph/0609119

0.1

0.01

bb

BR [η]

 $\tau^+\tau^-$

сē

- * Axion-like particles:
- Gauged U(I) group: $Z' \leftrightarrow Ungauged U(I)$ group: η
- Couples to fermions like pseudoscalar
- $m[\eta] \lesssim 400 \text{ GeV}$ (at LHC only accessible for $\gtrsim 200 \text{ GeV}$)

New Neutral Currents: Z' searches

- * Neutral current paved path to understanding gauge structure of the SM
- * Promising way to go beyond: many GUT models predict additional neutral currents (Z')
- * High-precision ILC measurements allow discoveries and model discrimination
- * Access to scales up to tens of TeV!!

The X-Files: The BSM ILC case

New Neutral Currents: Z' searches

- * Neutral current paved path to understanding gauge structure of the SM
- * Promising way to go beyond: many GUT models predict additional neutral currents (Z')
- * High-precision ILC measurements allow discoveries and model discrimination
- * Access to scales up to tens of TeV!!

* High-energy e+e- allows partial revelation of GUT group structure

Braam/Knochel/JRR, arXiv: 1001.4074

The X-Files: The BSM ILC case

New Neutral Currents: Z' searches

- * Neutral current paved path to understanding gauge structure of the SM
- * Promising way to go beyond: many GUT models predict additional neutral currents (Z')
- * High-precision ILC measurements allow discoveries and model discrimination

* High-energy e+e- allows partial revelation of GUT group structure

Braam/Knochel/JRR, arXiv: 1001.4074

 $e^+e^-\rightarrow\mu^+\mu^-$

ΔP/P=0.5%

C-TH-2001-007

100

120

[TeV]

Δsys=0.5%

ΔL=0.5%

* Contact interactions are sensitive to scales close to 100 TeV

J.R.Reuter

The X-Files: The BSM ILC case

What if: ... possible final words from LHC

Consider LHC signal with 4+ σ at the end of Run II or HL-Run

Before a 40-100 TeV pp machine, ILC is the *only* option to confirm this signal and discriminate it

The X-Files: The BSM ILC case

What if: ... possible final words from LHC

Consider LHC signal with 4+ σ at the end of Run II or HL-Run

Before a 40-100 TeV pp machine, ILC is the only option to confirm this signal and discriminate it

Assumption: most likely theory explanation exists at that point

ILC measurements have sensitivity and discovery potential (in that framework)

The X-Files: The BSM ILC case

What if: ... possible final words from LHC

Consider LHC signal with 4+ σ at the end of Run II or HL-Run

Before a 40-100 TeV pp machine, ILC is the only option to confirm this signal and discriminate it

Assumption: most likely theory explanation exists at that point

ILC measurements have sensitivity and discovery potential (in that framework)

Precision Electroweak Measurements

on the Z Resonance

The ALEPH, DELPHI, L3, OPAL, SLD Collaborations,¹ the LEP Electroweak Working Group,²

the SLD Electroweak and Heavy Flavour Groups

data are also used to predict the mass of the top quack, $m_{\rm t} = 173^{+13}_{-10}$ GeV, and the mass of the W boson, $m_{\rm W} = 80.363 \pm 0.032$ GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the Standard Model. Using in addition the direct measurements of $m_{\rm t}$ and $m_{\rm W}$, the mass of the as yet unobserved Standard Model Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level.

I.R.Reuter

Lessons and Homework

- * e+ e- machines offers indispensable physics program e.g. 1506.05992
- * Model-independent Higgs/top program: part of BSM program!
- * Model-independent electroweak searches (no-lose theorem!)
- * Dark Matter direct searches (lepton-hadron complementarity)
- * e+e- ≥ I TeV surpass LHC for EW/NC searches
- * Search for light electroweak particles not covered by LHC (e.g. tt recoil)
- * e+e- resolves many LHC search constraints
- * Mandatory for confirming/discriminating possibly unclear LHC discovery FINAL HOMEWORK: put all this in a concise framework/document

The X-Files: The BSM ILC case

