# Track reconstruction for the CLIC full silicon tracker

Frank Gaede°, Daniel Hynds\*, Rosa Simoniello\*, Yorgos Voutsinas°

on behalf of the CLICdp collaboration

LCWS15, Whistler BC Canada November 2-6, 2015



### Introduction

 Intense activity on the implementation of the simulation model and in the reconstruction code

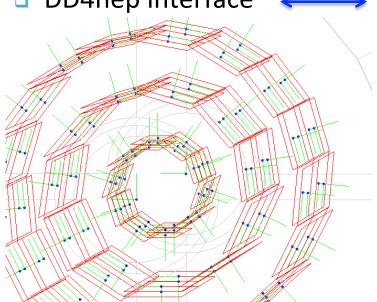
N. Nikiforou's talk on Tuesday

M. Petric's talk on Thursday

- Developments in the full CLIC tracking chain:
  - Digitiser
  - Pattern recognition
  - Track fitting
- Tracking re-implementation → inside ILCSOFT
- First results for physics events available

### Motivation

Tracking reimplementation to accommodate:


Kalman filter



**ILCSOFT** framework → **(DD)KalTest** 

- by Bo Li et al. possibility of reconstruction in not homogeneous B field → to be tested for CLIC

DD4hep interface

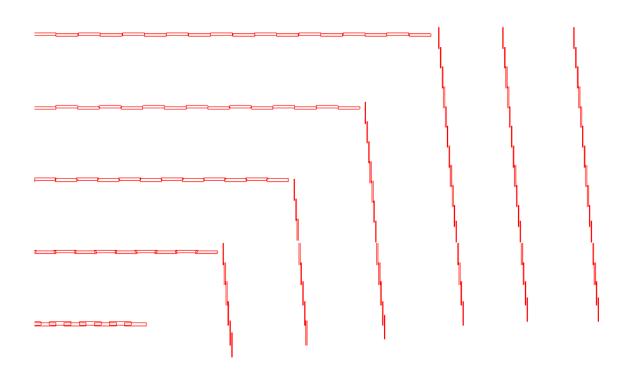


- Use of compact file instead of GEAR
- Tracking based on **surface** concept:
  - Local coordinate
    - → follow particle along its trajectory
  - Material and thickness
    - → compute effects of energy loss and multiple scattering

F. Gaede's talk on Tuesday

 Optimise strategies for the CLIC full silicon detector




Subject of this talk

→ status report

# The CLIC tracking system

- CLIC model used for these studies: CLIC\_o2\_v02
- NOT the most up-to-date → need of a stable version to develop tracking
- For current tracker version see

N. Nikiforou's talk on Monday



#### **Vertex:**

- 3 barrel double layers
- 3 endcap double layers in spiral geometry

#### **Tracker:**

- 5 barrel layers
- 6 endcap disks (7 in the new model)
- → Full coverage: module overlap in Rφ and z (under revision)

# **DIGITISER**

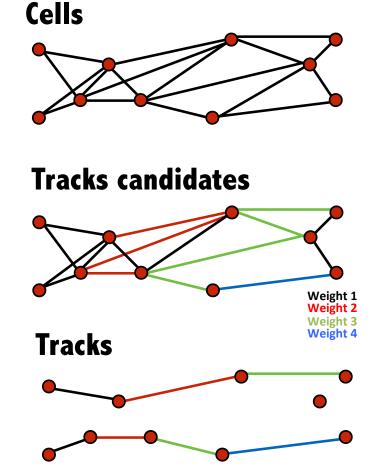


- Digitizer → gaussian smearing for single point resolution
  - $\square$  Vertex  $\rightarrow$  pixels, resolution: 3 $\mu$ m x 3 $\mu$ m
  - □ Tracker  $\rightarrow$  elongated pixels, resolution:  $7\mu m \times length/V12$

|                   | BARREL |     |      |      |      | ENDCAP |       |
|-------------------|--------|-----|------|------|------|--------|-------|
|                   | B1     | B2  | В3   | B4   | B5   | E in   | E out |
| Strip length [mm] | 1      | 1   | 5    | 10   | 10   | 1      | 10    |
| Resolution [µm]   | 300    | 300 | 1500 | 3000 | 3000 | 300    | 3000  |

#### • Plans:

- Better handling of hit combinations
- □ Take into account read out time → in presence of backgrounds it can give hit inefficiency
- □ Charge sharing → move away from gaussian smearing


### **PATTERN RECOGNITION**

# Pattern recognition for a full Si tracker

- 2 strategies under development
  - Method 1 based on existing ILD code adapted for CLIC
  - Method 2 based on conformal mapping
- Both included in ILCSOFT
  - Method 1 implemented in new processors in existing packages : MarlinTrkProcessor, ForwardTracking
  - Method 2 implemented in a new package: ConformalTracking
  - Steering file available in: ClicPerformance/examples/clicReconstruction.xml
  - → Under development → not yet recommended for users
- In the end, only one will be kept for the final CLIC software chain and used for physics events production
- Both strategies based (at least partially) on Cellular Automaton

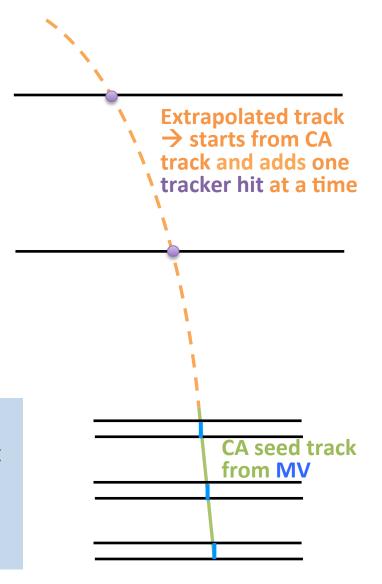
# **Cellular Automaton (CA)**

- Based on the creation of cells:
   a cell is a connection
   between two hits
  - → every cell has a weight
- Update cell weight: increase cell weight by 1 for each previous cell that passed criteria
- Track candidates: start from high weights and follow the connections
- Choose best tracks according to the  $\chi^2$  probability, number of tracker hits



### Method 1 – Overview

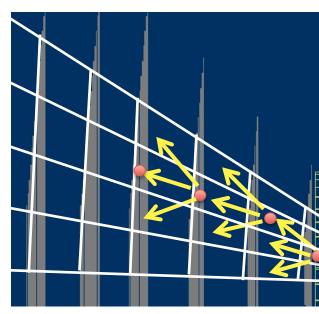
- From ILD software, adapt strategies for the full Si tracker case
  - Starting from existing ILD processors
  - Port to DD4hep, develop for the full Si tracker case
- Look for tracks according to helical trajectory
- Different strategies in different subdetectors:
  - Tracks passing through the vertex barrel
     → mix of CA and Kalman Filter strategies
  - Tracks passing through the vertex endcap
     → pure CA strategy
- Final combination of the tracks
  - Remove duplicate tracks
  - No need to combine track segments (full main tracker is considered for both cases)
  - Move to: TrackSubsetProcessor


# Method 1 – part I

- For tracks passing through the vertex barrel
  - Compute mini vectors (MV)
     exploit the double layer
     structure of the vertex barrel
  - Run CA on MV → obtain vertex tracks
  - Use vertex tracks as seed for track extrapolation to Inner and Outer Tracker (both in Barrel and Endcap layers)

#### **Mini Vectors:**

Create a mini vector out of 2 hits on adjacent layers (d < 5 mm) with  $\delta\theta$  < 1°

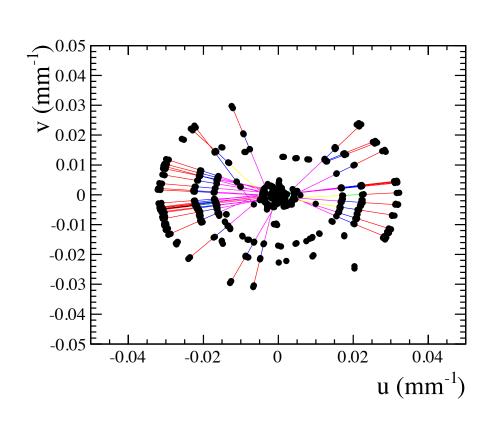

→ Reduce combinatorics in presence of background



# Method 1 – part II

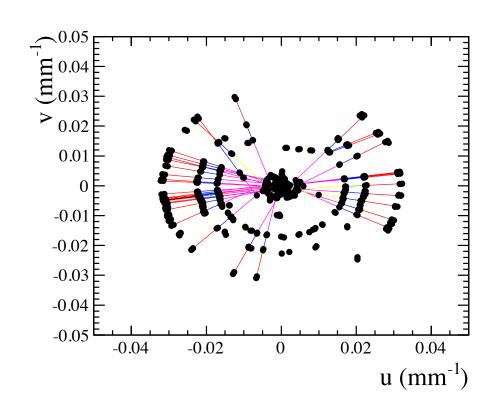
- For tracks passing through the vertex endcap
  - □ Based on ILD Forward Tracking, adapted to the CLIC case
     → i.e.: change in the sector definition
  - Run CA on vertex endcap hits, inner endcap hits, outer endcap hits
  - Sectors defined to limit combinatorics
    - Sector is a  $(\Delta \phi, \Delta \theta)$  region between two layers
    - Look for connections in neighbouring sectors (define step in  $\phi$ ,  $\theta$ , nlayers internally to the processor)
  - Criteria defined in steering file to establish connections

- Sector and criteria definition used for both vertex detector and main tracker
  - Better to optimise sectors and criteria for each subdetector?




### Method 2 – Overview

- Based on conformal mapping 
   coordinate transformation that preserves local angles
- Transformation of the (x,y)-plane in the (u,v)-plane


$$u = x/(x^2 + y^2)$$
  
 $v = y/(x^2 + y^2)$ 

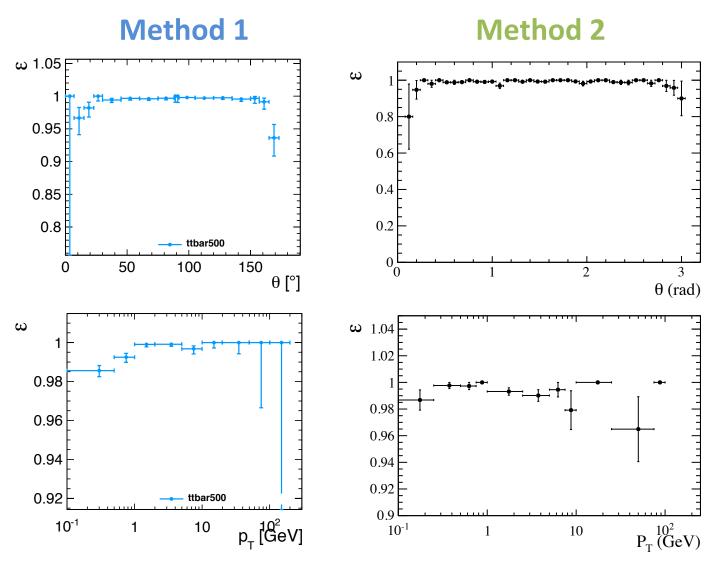
- → Tracks are straight lines
- Run CA on all hit collections →
   same approach in the full tracker
   system → no sub-track
   combination needed
- Method has been used by Star L3 trigger and the ALICE experiment



### **Method 2 - remarks**

- In the (u,v)-plane vertex hits are the outermost while the tracker hits are the innermost
- High-p<sub>T</sub> tracks point to the center
- z information also used, even
  if not visible in the projection
  in the (u,v)-plane → do not
  connect hits that are very
  distant in z
- No geometry information
   used (cells allowed between
   different layers → robust in
   case of missing hits)



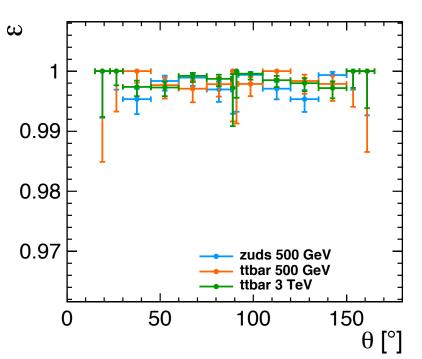

# **Evaluation of performance**

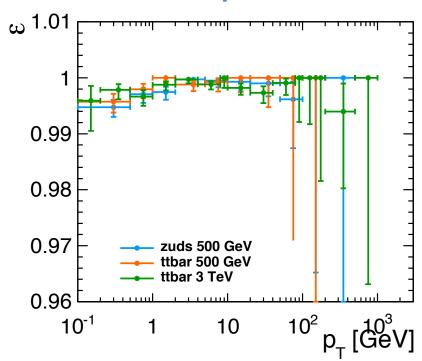
Performance evaluation: track reconstruction <u>efficiency</u> and <u>purity</u>

$$\epsilon = \frac{N_{tracks}^{reconstructed}}{N_{tracks}^{reconstructable}} \qquad \qquad P = \frac{N_{tracks}^{hits}}{N_{associated\ MC}^{hits}}$$

- A particle is considered reconstructable if:
  - It is charged and it leaves at list 4 hits in the full tracking system
  - Prompt particles: distance from the interaction point less then 10 cm
  - □ It is in tracker acceptance:  $|\cos(\theta)| > 0.99 \rightarrow \theta > 8^{\circ}$
  - □ It has  $p_T > 100 \text{ MeV}$
- Look at the performance in events without background overlay:
  - ttbar and di-jets events at 500 GeV
  - ttbar events at 3 TeV
  - → Last week start production of background events in the new detector model to be overlayed with signal samples
- Computing time will be also important but not considered at the moment

### Results on ttbar events at 500 GeV



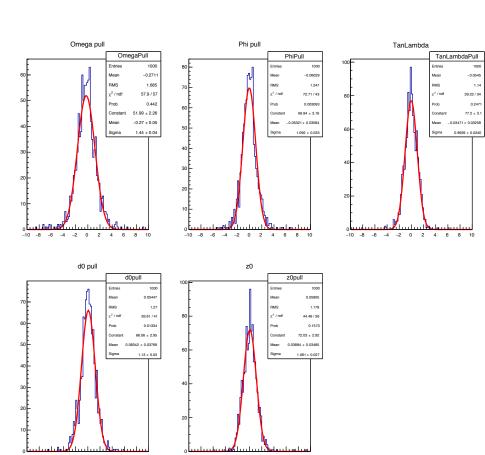


- Proof of concept for both methods ☺ Similar results
- Next: increase statistics

16

### Performance in different physics samples

#### Method 1 – CA in vertex barrel + extrapolation






- Look only at tracks passing through the vertex barrel
- Performance looks consistent across different physics samples
- Results at 3 TeV, very preliminary → purity of the tracks not checked
- Substantial increase of processing time at 3 TeV

# **TRACK FIT**

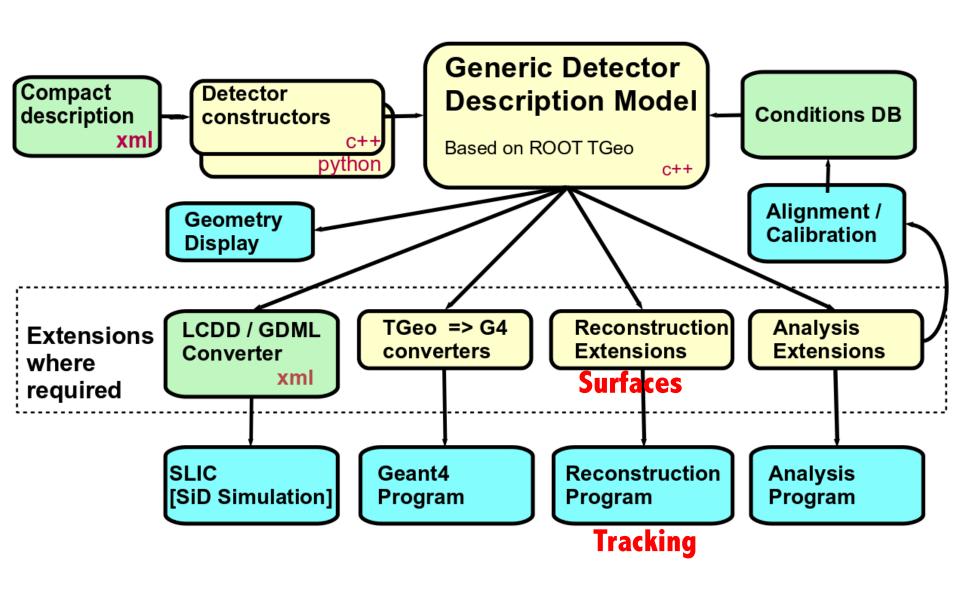
### **Track fit**

- Use ILCSOFT Refit processor  $\rightarrow$  fit implementation in AIDATT (based on GBL) tested problem in the  $\Omega$  pull to be understood (same for ILD)
- Decent pulls in the central region ( $\theta = 85^{\circ}$ ) except for  $\Omega$
- In forward region, failure of fit even if track has high purity  $\rightarrow$  to be investigated



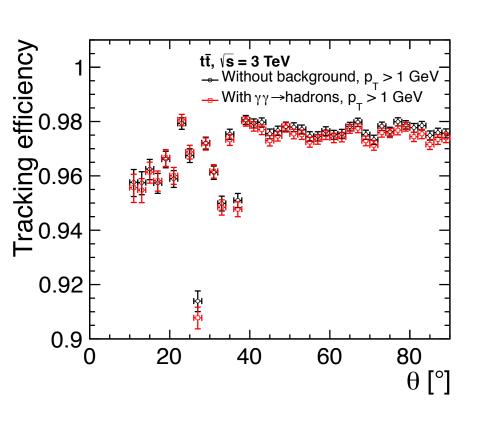
#### Refit processor

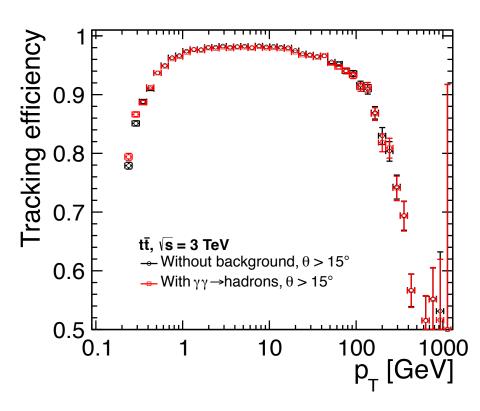
|               | $\mu_{fit}$        | $\sigma_{fit}$    |
|---------------|--------------------|-------------------|
| OmegaPull     | $-0.270 \pm 0.047$ | $1.440 \pm 0.041$ |
| PhiPull       | $-0.053 \pm 0.036$ | $1.056 \pm 0.033$ |
| TanLambdaPull | $-0.035 \pm 0.033$ | $0.994 \pm 0.024$ |
| d0pull        | $0.083 \pm 0.038$  | $1.130 \pm 0.035$ |
| z0pull        | $0.039 \pm 0.035$  | $1.061 \pm 0.027$ |


#### Refit in AIDATT with GBL

|               | $\mu_{fit}$        | $\sigma_{fit}$    |
|---------------|--------------------|-------------------|
| OmegaPull     | $-0.379 \pm 0.048$ | $1.450 \pm 0.038$ |
| PhiPull       | $-0.151 \pm 0.040$ | $1.220 \pm 0.033$ |
| TanLambdaPull | $-0.072 \pm 0.037$ | $1.135 \pm 0.031$ |
| d0pull        | $0.105 \pm 0.039$  | $1.180 \pm 0.031$ |
| z0pull        | $0.088 \pm 0.038$  | $1.121 \pm 0.029$ |

# **Conclusions and plans**


- Significant progress in the pattern recognition
  - 2 methods under development for CLIC
- Work on-going but already encouraging performance
- Plans for pattern recognition:
  - Studies with background overlayed
  - ullet Increase statistics  $oldsymbol{ o}$  run on the grid
  - Studies with non-homogeneous magnetic field
- Other plans (in parallel to pattern recognition developments):
  - Improve realism in the digitiser
  - Improve track fit


# **BACK-UP**



# Perfomance with SiD tracking

#### C. Grefe's thesis



