

Measurement of the Higgs to EW bosons decays at low and intermediate CLIC energies

*Vinca Institute of Nuclear Sciences, Belgrade, SERBIA

Overview

- A word of introduction Higgs to EW bosons couplings at CLIC
- Simulation and reconstruction
- Signal signatures and samples
- Background for the measurements
- General strategy of the analyses
- H to WW decay at 350 GeV
- H to ZZ decay at 1.4 TeV
- Conclusion

Higgs to EW bosons couplings at CLIC

- Energy staging possibility to study wide span of physics program
- Higgs to EW bosons couplings at CLIC:
 - ≥ 350 GeV, 500 fb⁻¹, $e^+e^- \rightarrow HZ$ model-independent measurement of g_{HZZ} (~0.8%), total ZH production x-section
 - Once $g_{\rm HZZ}$ is known, $g_{\rm HWW}$ can be determined from HZ and WW-fusion Higgs production and consequently $\Gamma_{\rm H}$

$$\sigma(H\nu_e\overline{\nu}_e) \times BR(H \to WW^*) \propto \frac{g_{HWW}^4}{\Gamma_H}$$

To exploit all the collected data, individual measurements are fitted in a model (in)dependent way

 $g_{\text{HZZ},}$ g_{HWW} sub-percent precision - probe of the Higgs structure

Simulation and reconstruction

- Event generation: WHIZARD V1.95,
 PITHYA V6.4; ISR, realistic beam
 spectrum (GuineaPig 1.4.4)
 - EPA to describe processes with exchanged photon virtuality < 4 GeV;</p>
 - Beam-recoil due to ISR;
- Full CLIC ILD detector simulation
- Particle ID and reconstruction
 PandoraPFA fully reconstructed
 signal and background
- Overlay of beam-induced $\gamma\gamma$ \to hadrons before digitization
- No beam polarization is considered

CLIC ILD

Signal signatures and samples

$$(HZ @ 350 GeV) H \to WW^*, W \to q_1 q_2$$

 $(Hv_e\overline{v}_e \otimes 1.4TeV) H \rightarrow ZZ^*, Z \rightarrow q\overline{q} \lor Z \rightarrow ll$

- 500 fb⁻¹
- Signature: 4-jet+21 or 6-jet
- BR(H \rightarrow WW* \rightarrow 4 jets) \approx 10%
- Z→11 ~700 events (~1%)
- $Z \rightarrow q\overline{q}$ ~5000 events (~7%)
- 4jets+21 events: $B/S\approx10^3$
- 6-jet events: B/S≈10²

- 1.5 ab⁻¹
- Signature: E_{miss} plus (4-jet or 2-jet+21)
- BR(H \rightarrow ZZ* \rightarrow 4 jets) \approx 1.4%
- BR(H \rightarrow ZZ* \rightarrow 2jets + 21) \approx 0.4%
- ~ 5200 4-jet events
- ~ 1500 (2-jet + 21) events
- 4-jet events: B/S≥10⁴
- (2-jet+21) events: $B/S \ge 10^5$

Background for the measurements

$$(HZ @ 350GeV) H \rightarrow WW^*, W \rightarrow q_1 q_2$$
$$Z \rightarrow l^+ l^- \lor Z \rightarrow q\overline{q}$$

6-jet sig	mal 9.16 [fb]	4-jet + 21	signal 0.91 [fb]	
Common background [fb]				
	$e^+e^- \rightarrow qqqq$	5847.00	Preselection	
Preselection	$e^+e^- \rightarrow qqll$	1704.00		
Preselection	$e^+e^- \rightarrow qqlv$	5914.00		
$e^+\epsilon$	$e^- \rightarrow HZ, H \rightarrow other$	92.60		
	$e^+e^- \rightarrow qqv_e \overline{v_e}$	325.00	Preselection	
Preselection	$e^+e^- \rightarrow Hv_av_a$	52.00	Preselection	
	$e^+e^- \rightarrow t\bar{t}$	450.00		
	$e^+e^- \rightarrow WWZ$	10.00		
	·	•	·	

$(H\nu_e\overline{\nu}_e \otimes 1.4TeV) H \rightarrow ZZ^*, Z \rightarrow q\overline{q} \lor Z \rightarrow ll$

4-jet signal 3.45[fb]	2-jet + 21 signal 0.995[fb]				
Common background [fb]					
$e^+e^- \rightarrow qqv_e \overline{v_e}$	788.00				
$e^+e^- \rightarrow qqqqv_e v_e^-$	24.70				
$e^+e^- \rightarrow Hv_e\overline{v_e}, H \rightarrow WW \rightarrow qqqq$	27.60				
$e^+e^- \rightarrow qq$	4009.50				
$e^{^{+}}e^{^{-}} ightarrow qqqq$	1245.10				
$e^{+}e^{-} \rightarrow qqqqll$	71.70				
$e^{+}e^{-} \rightarrow qqqqlv$	115.30				
$e^+e^- \to Hv_e\overline{v_e}, H \to b\overline{b}$	136.94				
$e^+e^- \rightarrow Hv_e\overline{v_e}$	19.02				
4-jet signal specific background[fb]	2-jet + 21 specific background[fb]				
$e^+e^- \rightarrow qqqqv$ 338.50	$e^+e^- \rightarrow qqll$ 2725.80				
Presel. $\gamma\gamma \rightarrow qqqq$ 30212.00	Presel $e\gamma \rightarrow qqv$ 29873.50				
Presel $e^+ \gamma \rightarrow qqqqe$ 2891.00	Presel $e\gamma \rightarrow qqe$ 16898.80				
	$\gamma\gamma \rightarrow qq$ 76782.80				
	$\gamma\gamma \rightarrow qqll$ 13829.70				
	$e^+e^- \rightarrow qqlv$ 4309.70				

General strategy of the analyses

 Both leptons and jets can be present in signal signatures

 b-tagging applied to 2jets to remove H→bb bkg.

Lcfi Vertexing

Preselection

• Extract (σ xBR) uncertainty from the number of bkg and signal events $\Delta(\sigma \times BR) = \sqrt{S+B}$

 $(\sigma \times BR)$

Relative statistical uncertainty of σ×BR

Higgs to ZZ decay at 1.4 TeV

 $H\rightarrow ZZ*\rightarrow 4$ jets, preselection $\varepsilon_{ff}(S)=32\%$

m_H (GeV)

 $e^+e^- \rightarrow Hv_{\downarrow}\overline{v_{\downarrow}}$

PRESELECTION

10³ Signal $H \rightarrow ZZ \times \rightarrow 4$ jets $H \rightarrow ZZ* \rightarrow 2jets + 21$ $\rightarrow aqqq v_{*}v_{*}$ 10² $e^+e^- \rightarrow qqqqv$ 10 $45GeV < m_7 < 110GeV$ $\rightarrow WW \rightarrow qqqq$ $e^+e^- \rightarrow qqv_*v_*$ $m_{7'} < 65 GeV$ $90GeV < m_H < 165GeV$ 10⁻¹ 110 115 120 125 130 135 140 145 150 155 $-\log y_{34} < 3.5$ find 2 leptons m_⊔ (GeV) $-\log y_{23} < 3.0$ $H\rightarrow ZZ*\rightarrow 2jets + 21$, preselection $\varepsilon_{ff}(S)=62$ % $\varepsilon_{ff}(11) = 87\%, 1=e, \mu$ $100 GeV < E_{vis} < 600 GeV$ \rightarrow 62% with τ 10⁶ count $p_{jet}^T > 80GeV$ $^{+}e^{-} ightarrow qqqql \, u$ 10⁵ $e^+e^- \rightarrow qqqqll$ $P_{b}^{jet1} < 0.95$ $\rightarrow qqll$ 10⁴ $P_{b}^{jet2} < 0.95$ 10^{3} 10^{2} Surviving background 10 $e^{\pm}\gamma \rightarrow qqv_{e} e^{+}e^{-} \rightarrow qqlv e^{+}e^{-} \rightarrow qq$ $e^+e^- \rightarrow Hv_{\scriptscriptstyle o}v_{\scriptscriptstyle o}, H \rightarrow WW \rightarrow qqqq$ 10⁻¹ $e^+e^- \rightarrow qqqqv_e$ $|e^+e^- \rightarrow Hv_{\scriptscriptstyle o}\overline{v_{\scriptscriptstyle o}}, H \rightarrow b\overline{b}| |e^+e^- \rightarrow qqll$ $e^+e^- \rightarrow qqv_{\rho}v_{\rho}$ 150 100 110 120 130 140 16

Higgs to ZZ decay at 1.4 TeV

• Preselection dominantly reduces $e^{\pm}\gamma \rightarrow qqqqe$ and $\gamma\gamma \rightarrow qqqq$ background (for 4-jet final state) and $e^{\pm}\gamma \rightarrow qqe$ and $e^{\pm}\gamma \rightarrow qqv$, for 2jets+21 final state.

Higgs to ZZ decay at 1.4 TeV

MVA

MVA signal efficiency ~60(45)% for 4jets(2jets+21) H \rightarrow ZZ* \rightarrow 4jets, overall $\epsilon_{ff}(S)$ =20%

count

• Input variables:

- Masses (Z,Z*,H)
- Visible energy
- Jet $P_{\mathtt{T}}$
- b,c-tag probabilities for jets
- No. of jets (trans. variables $-\log(y_{23})$, $-\log(y_{34})$
- + additional variables:

 $\mathrm{N_{PFO}}$, θ_H , ($\mathrm{E_{vis}}$ - $\mathrm{E_{H}}$) , $\mathrm{m_{ll}}$, $\mathrm{m_{qq}}$, and -log($\mathrm{y_{12}}$)

for 2jets+21 final state

Irreducible background
4 jets | 2 jets+21

& resulting rejection

 $e^+e^- \rightarrow H \nu \bar{\nu}, H \rightarrow other$ 8.9%

$$e^+e^- \rightarrow qqv_e\overline{v_e}$$
 2.1%

Higgs to ZZ decay at 1.4 TeV results

$\sigma(H\nu_e\overline{\nu}_e) \times BR(H \to ZZ^*)$				
$ZZ \rightarrow qqqq$		$ZZ \rightarrow qqll$		
20%	Signal efficiency	28%		
1031	No. signal events	425		
17.7%	$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)} = \frac{\sqrt{S+B}}{S}$	5.6%		

- $\sigma_{\rm prod.} \times BR$ for Higgs to ZZ decay at 1.4 TeV can be measured with statistical uncertainty at ~6% in the semileptonic channel and ~18% in the hadronic channel.
- Result is dominated by irreducible (signal-like) background and by the limited signal efficiency for the hadronic channel (due to preselection cut on jet $p_{\scriptscriptstyle T}$).

Higgs to WW decay at 350 GeV

PRESELECTION

$H \rightarrow WW * \rightarrow 6$ jets $m_7 > 40 GeV$ $E_{vis} > 250 GeV$ $p_{\scriptscriptstyle T}^{\,jet} > 80 GeV$ $-\log y_{12} < 2.0$ $-\log y_{23} < 2.6$ $-\log y_{34} < 3.0$ $-\log y_{45} < 3.2$ $-\log y_{56} < 4.0$ $N_{PFO} > 50$

$H \rightarrow WW * \rightarrow 4$ jets + 21

find 2 leptons ε_{ff} (11) ~90%

 $70GeV < m_7 < 100GeV$

 $H \rightarrow WW^* \rightarrow 4$ jets + 21, preselection $\varepsilon_{ff}(S) = 80(87)$ % for $l=e(\mu)$

Surviving background

thrust < 0.9

 $P_{h}^{jet1} < 0.9$

 $P_{b}^{jet2} < 0.9$

$$e^+e^- \to HZ, H \to other$$

$$e^+e^- \to qqll \qquad e^+e^- = 0$$

$$e^+e^- \rightarrow t\bar{t}$$
 80 82 84 86 88 90 92 94 96 98 10 m_z (GeV)

Higgs to WW decay at 350 GeV

Preselection dominantly reduces:

```
6 jets FS: e^+e^- \rightarrow qqlv, e^+e^- \rightarrow qqll, Hvv background
4 jets +21 FS: e^+e^- \rightarrow qqqq, e^+e^- \rightarrow qqvv, Hvv background
```


Higgs to WW decay at 350 GeV

MVA

MVA signal efficiency: ~40(63)% 6jets(4jets+21)

- Input variables:
 - N_{PFO}
 - Masses (W,W*,H,Z)
 - Visible energy
 - Jet $P_{\scriptscriptstyle T}$
 - b,c-tag probabilities for jets
 - No. of jets (transition variabl
 -log(y_{ii}) i,j=1,6
 - + additional variables:

 $P_{T}(H)$, $\theta(W,W^*)$, thrust - for 6-jet FS

 θ_z , for 4jets+21 final state

$$e^+e^- \rightarrow HZ, H \rightarrow other$$
 0.29%

 $e^+e^- \rightarrow qqqq$ 0.15%

$$e^+e^- \rightarrow HZ, H \rightarrow other$$
 3.0%

$$e^+e^- \to qqll$$

H
$$\rightarrow$$
WW* \rightarrow 4jets + 21, overall $\epsilon_{ff}(S) = 42 (55) \%$ S for $1=e(\mu)$

Higgs to WW decay at 350 GeV results

	$\sigma(HZ) \times BR(H \to WW^* \to qqe$	79)	
$Z \rightarrow q\overline{q}$		$Z \rightarrow e^+e^-$	$Z \rightarrow \mu^+ \mu^-$
29%	Signal efficiency	42 %	55%
1328	No. signal events	95	125
5.9%	$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)} = \frac{\sqrt{S+B}}{S}$	16.1%	13.1%

- $\sigma_{\rm prod.} \times BR$ for Higgs to WW decay at 350 GeV can be measured with statistical uncertainty at $\leq 16\%$ in the semileptonic channel and $\sim 6\%$ in the hadronic channel.
- Result is dominated by irreducible (signal-like)
 backgrounds in the hadronic channel and by the
 limited signal statistics in the semileptonic decay
 channel.

Conclusion

- σ×BR(H→VV*, V=W,Z) is observable to be measured at various CLIC energy stages;
- Its uncertainty affects the g_{HVV} precision obtained from the overall fit;
- H→WW*→4jets is measured at 350 GeV in HZ, where Z is decaying hadronicly or leptonicly; Statistical uncertainties are: 5.9% (Z→qq) and 13.1% (Z→μ⁺μ⁻), 16.1% (Z→e⁺e⁻). The later result is being refined by ongoing optimization of lepton and Z reconstruction.
- H→ZZ*→4jets (2jets+21) is measured at 1.4 TeV in Hvv;
 Statistical uncertainties are: 17.7% (5.6%);
- Both analyses are performed using the full detector simulation and reconstruction of physics and beaminduced processes.

Additional slides

- MVA observables -

MVA sensitive observables H to ZZ

MVA sensitive observables H to WW

