

November 3, 2015 LCWS2015 @ Whistler, Canada

PHENOMENOLOGY OF

HIGGS BOSONS IN THE

GEORGI-MACHACEK MODEL

Cheng-Wei Chiang

National Central University
Academia Sinica
National Center for Theoretical Sciences

CWC and KYagyu, JHEP 1301 (2013) 026

CWC, AL Kuo and KYagyu, JHEP 1310 (2013) 072

CWC, S Kanemura and K Yagyu, PRD 90 (2014) 115025

CWC and KTsumura, JHEP 1504 (2015) 113

CWC, S Kanemura and K Yagyu, arXiv:1510.06297 [hep-ph]

CWC, AL Kuo and TYamada, to arXiv: 1511.xxxxx [hep-ph]

QUICK OVERVIEW OF THIS TALK

- Georgi-Machacek Model
- Higgs decay pattern
- Constraints from LHC data
 - SM-like Higgs, like-sign W, extra neutral Higgs searches
- ILC phenomenology
- Summary

WHY HIGGS TRIPLETS?

All models are wrong, but some are useful.

--- George E.P. Box

- Higgs triplet models have the following intriguing features:
 - type-II seesaw for Majorana neutrino mass, generated by the VEV of the new scalar (automatically induced by EWSB);
 - existence of a doubly-charged Higgs boson, leading to like-sign LNV and possibly even LFV processes at tree level;
 - a link between neutrino and LHC physics
 - SM-like Higgs possibly with stronger couplings with weak bosons;
 - existence of a H[±]W[∓]Z vertex at tree level through mixing (only loop-induced in models such as 2HDM).

GEORGI-MACHACEK MODEL

Georgi, Machacek 1985 Chanowitz, Golden 1985

• The Higgs sector includes SM doublet field ϕ (2,1/2) and triplet fields χ (3,1) and ξ (3,0)

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^{+} \\ \phi^{-} & \phi^{0} \end{pmatrix}, \qquad \Delta = \begin{pmatrix} \chi^{0*} & \xi^{+} & \chi^{++} \\ \chi^{-} & \xi^{0} & \chi^{+} \\ \chi^{--} & \xi^{-} & \chi^{0} \end{pmatrix}$$

$$SU(2)_{L}$$
SU(2)_R

transformed under SU(2)_L×SU(2)_R as

 $\Phi \to U_L \Phi U_{R^{\dagger}}$ and $\Delta \to U_L \Delta U_{R^{\dagger}}$ with $U_{L,R} = \exp(i \theta_{L,R^a} T^a)$ and T^a being corresponding SU(2) generators.

GEORGI-MACHACEK MODEL

Georgi, Machacek 1985 Chanowitz, Golden 1985

• The Higgs sector includes SM doublet field ϕ (2,1/2) and

triplet fields χ (3,1) and ξ (3,0)

$$\Phi = \begin{pmatrix} v_{\phi} & \phi^{+} \\ \phi^{-} & v_{\phi} \end{pmatrix}, \qquad \Delta = \begin{pmatrix} v_{\Delta} & \xi^{+} & \chi^{++} \\ \chi^{-} & v_{\Delta} & \chi^{+} \\ \chi^{--} & \xi^{-} & v_{\Delta} \end{pmatrix}$$

transformed under SU(2)_L×SU(2)_R as

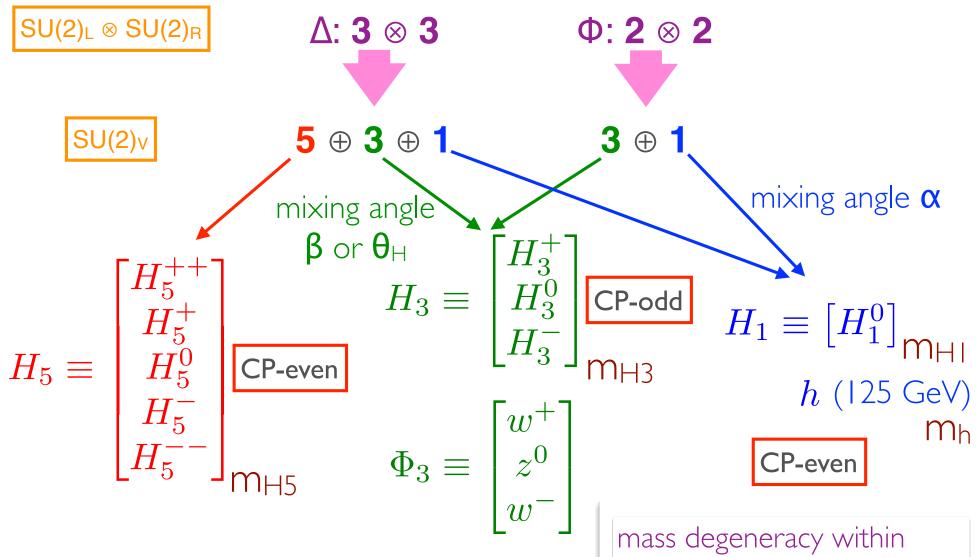
 $\Phi \to U_L \Phi U_{R^\dagger}$ and $\Delta \to U_L \Delta U_{R^\dagger}$ with $U_{L,R} = \exp(i \theta_{L,R^a} T^a)$ and T^a being corresponding SU(2) generators.

- Take $v_X = v_\xi \equiv v_\Delta$ (aligned VEV).
 - \rightarrow SU(2)_L×SU(2)_R \rightarrow custodial SU(2)_V
 - $\rho = 1$ at tree level

VACUUM EXPECTATION VALUE

The VEV's are subject to the constraint

$$v^2 = v_\phi^2 + 8v_\Delta^2 = \frac{1}{\sqrt{2}G_F} = (246 \text{ GeV})^2$$


with two mixing angle definitions seen in the literature:

$$\tan \theta_H = \frac{2\sqrt{2}v_{\Delta}}{v_{\phi}} \text{ or } \tan \beta = \frac{v_{\phi}}{2\sqrt{2}v_{\Delta}}$$

- One could attribute EWSB entirely to v_{Δ} (\approx 87 GeV) while keeping $v_{\Phi}=0$.

 Georgi, Machacek 1985
 Chanowitz, Golden 1985
- Perturbativity of top Yukawa coupling demands
 v_∆ ≤ 80 GeV.
 - other constraints later

CUSTODIAL SU(2) CLASSIFICATION

mass degeneracy within each representation as a result of custodial symmetry

NEUTRAL HIGGS COUPLINGS

 Normalize all couplings to those for SM Higgs boson (V = W,Z; F = quarks):

$$\kappa_F = rac{g_{arphi FF}}{g_{hFF}^{
m SM}} \;,\;\; \kappa_V = rac{g_{arphi VV}}{g_{hVV}^{
m SM}} \;$$
 group factor that makes it

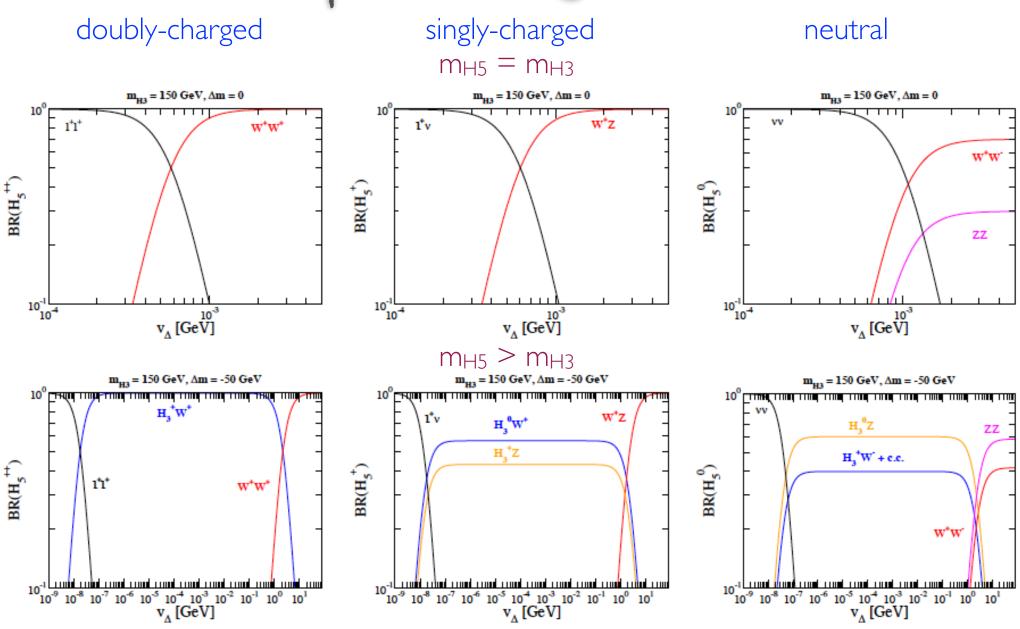
possible for the entire factor to be greater than I

	Higgs	κ_F	1 × V	greater than I	
suppress	h	$\frac{\cos lpha}{\sin eta}$	$\sin\beta\cos\alpha - \sqrt{\frac{8}{3}}\cos\beta\sin\alpha$	-(mixing required) n $lpha$	
	H_1^0	$\frac{\sin \alpha}{\sin \beta}$	$\sin \beta \sin \alpha + \sqrt{\frac{8}{3}} \cos \beta \cos \alpha$		
	H_3^0	$i\eta_f\coteta$	0	gauge-phobic	
	H_5^0	0	$ \kappa_W = -\frac{\cos \beta}{\sqrt{3}} \text{ and } \kappa_Z = \frac{2\cos \beta}{\sqrt{3}} $	quark-phobic	

 $\eta_f = +1$ for up-type quarks and -1 for down-type quarks and charged leptons.

independent of α

DECAY PATTERN

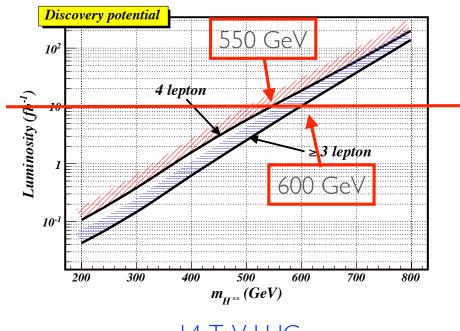

- Decay rates of new Higgs bosons generally depend on their mass hierarchy, v_{Δ} (or $tan\theta_{H}$), and mixing angle α .
- Fix $m_h = 125$ GeV and $\alpha = 0$ to be specific.
- Decay rates now depend upon v_△, m_{H3} and the mass splitting between 5-plet and 3-plet:

$$\Delta m \equiv m_{H_3} - m_{H_5}$$

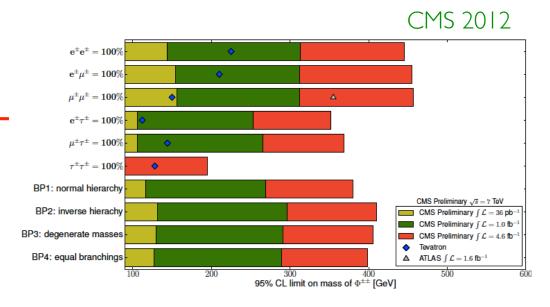
 General mass spectra without fixing α and consistent with current Higgs data and some other theoretical and experimental constraints have recently been worked out.

CWC, Kuo, Yamada, to appear

DECAYS OF H5 BOSONS



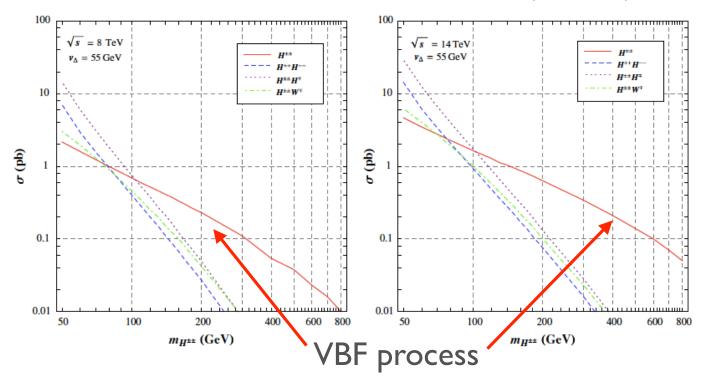
 v_{Δ} is an important order parameter of the model.


SIGNATURE FOR SMALL VA

 In the case of small v_∆, both H^{±±} and H[±] decay dominantly into leptonic final states, same as the simplest Higgs triplet model in phenomenology.

Akeroyd, CWC, Gaur 2010

14-TeV LHC


A general lower bound of 400 GeV from like-sign dilepton modes is given by both ATLAS and CMS.

ATLAS 2012, 2014

PRODUCTION FOR LARGE VA

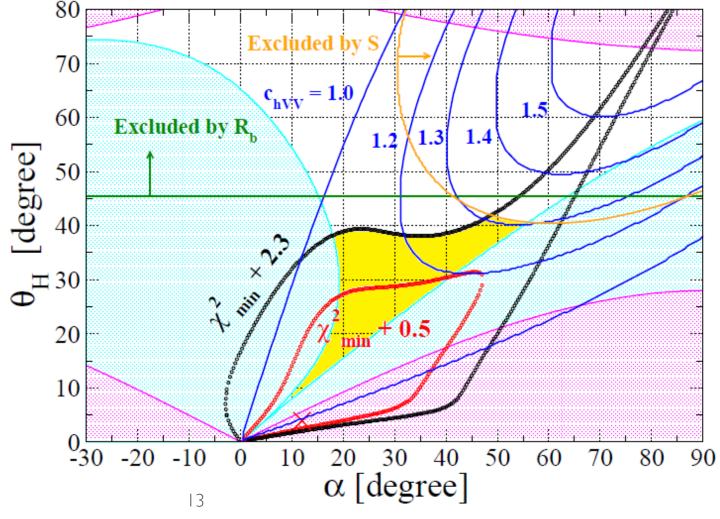
- For large v_△, H^{±±} couples dominantly to weak bosons.
- VBF as dominant production processes for sufficiently large v_△ and sufficiently large M_{H±±}.

CWC, Nomura, Tsumura PRD 2012

an experimentally less explored scenario, and unique for GM

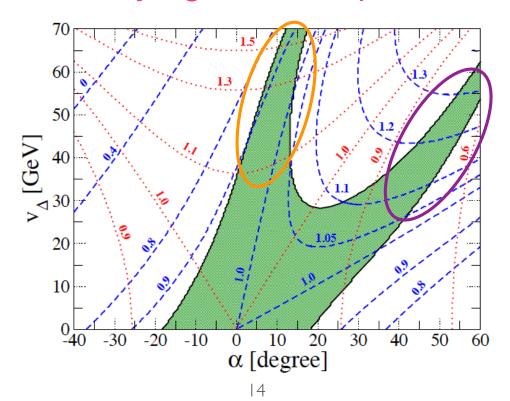
CONSTRAINT FROM HSM

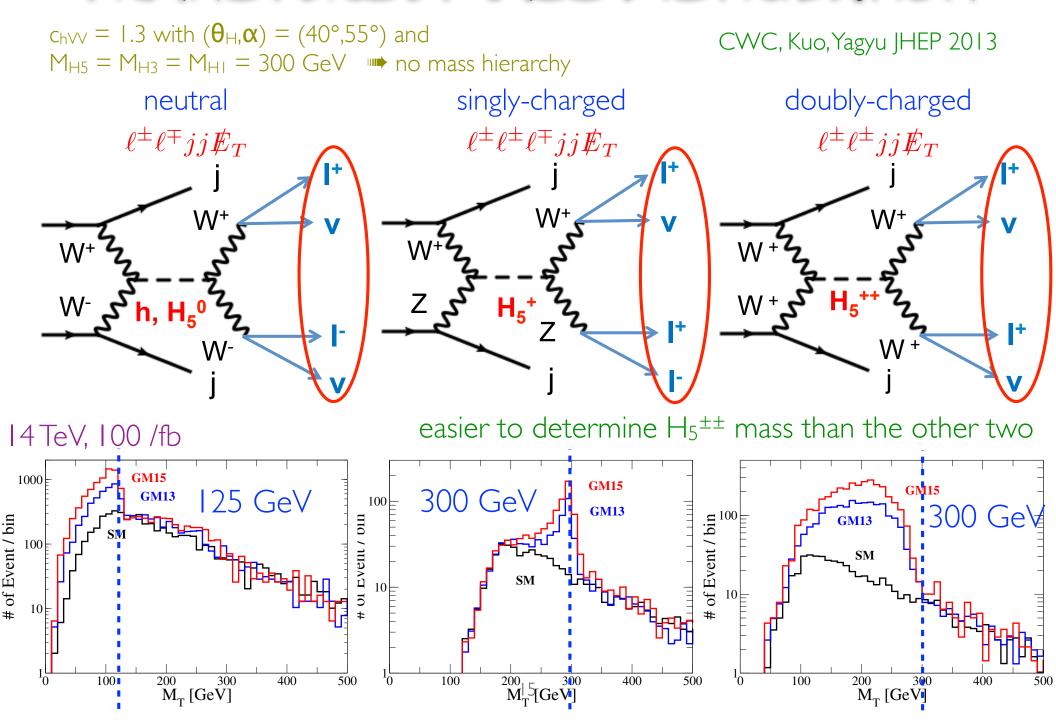
CWC, Kuo, Yagyu JHEP 2013


- Take $M_{H5} = M_{H3} = M_{H1} = 300 \text{ GeV}$ as an example.
- Allowed region in mixing angle space

 $c_{hVV} \equiv g_{hVV}^{\rm GM}/g_{hVV}^{\rm SM}$

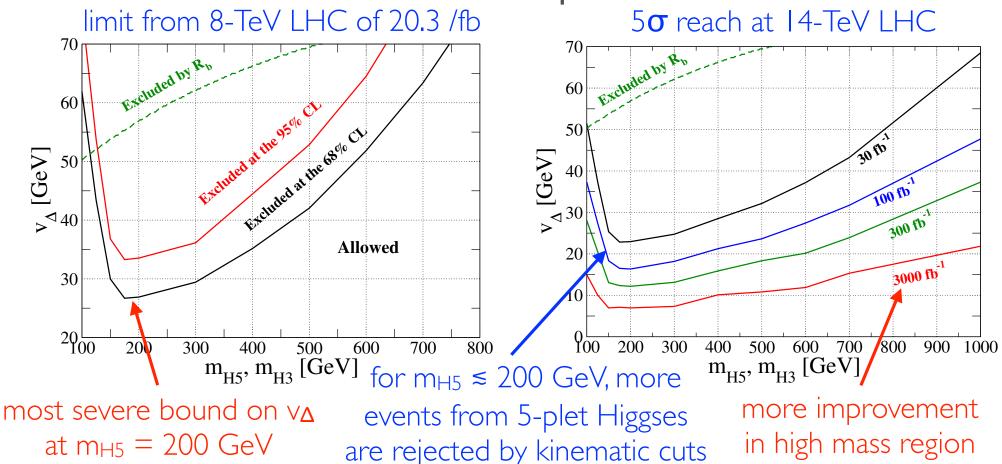
- ignal strength:
 (~2013 summer)


 wity signal strengths
- unitarity
- vacuum stability
- R_b
- S parameter
- hVV coupling up by ~1.3 allowed

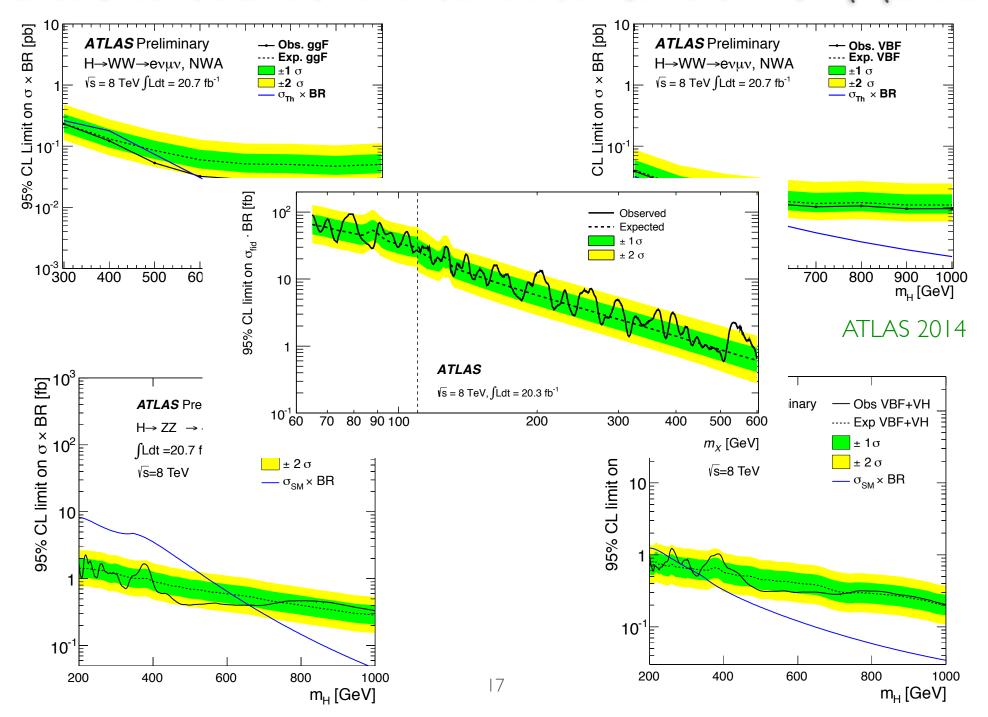

IMPORTANCE OF VBF PROCESSES

$$\mu_{VV}^{GGF} = 1.0 \pm 0.1$$
 Ky contours KF contours

- Enhancement (suppression) in BR(h \rightarrow VV) due to $\kappa_V > 1$ (< 1) is compensated by suppression (enhancement) in gluon fusion cross section due to $\kappa_F < 1$ (> 1).
 - importance of studying the VBF processes in GM


TRANSVERSE MASS DISTRIBUTION

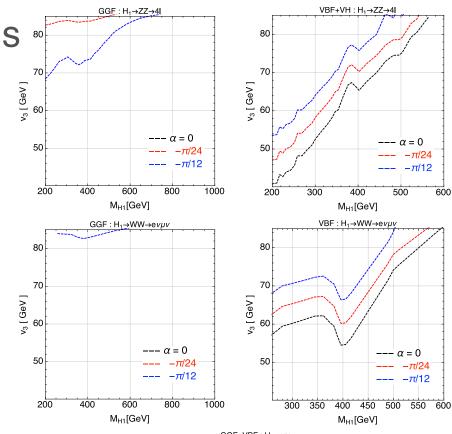
CONSTRAINT FROM H5


ATLAS 2014

 ATLAS data of same-sign di-boson events (20.3/fb, 8-TeV) can be used to limit the v_{Δ} -m_{H5} plane:

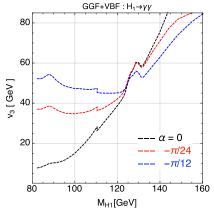
• Results are independent of α. CWC, Kanemura, Yagyu PRD 2014

SEARCHES OF OTHER NEUTRAL HIGGSES



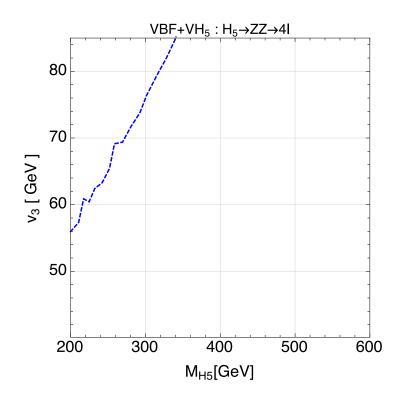
CONSTRAINT FROM H10

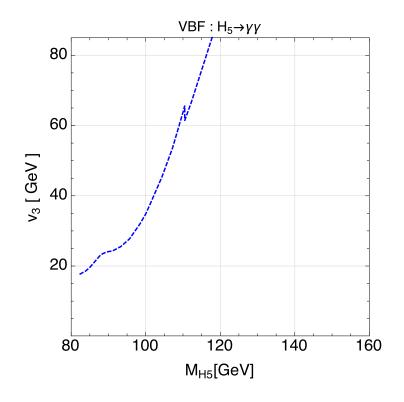
CWC and Tsumura JHEP 2015


 Constraints from VBF channels are stronger than those from GGF mechanism.

 ZZ is more constraining than WW when M_{H1}≤375 GeV as the former has a slightly better experimental sensitivity.

• The $\gamma\gamma$ mode (GGF+VBF) provides useful bounds on v_{Δ} in the low-mass regime.

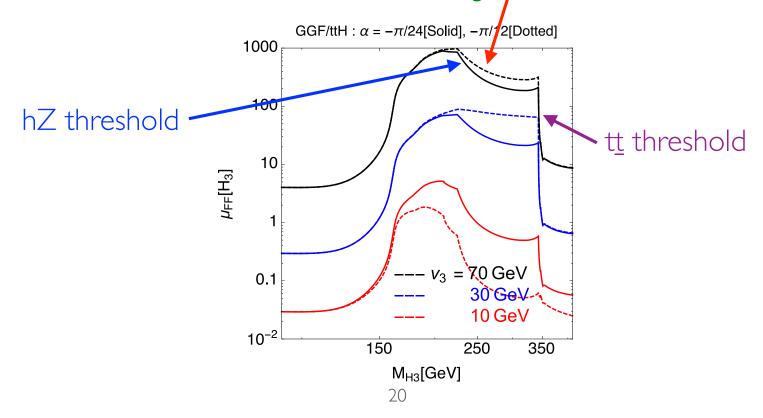

All of them are sensitive to a.



CONSTRAINT FROM H50

CWC and Tsumura JHEP 2015

- Since H_5 does not couple to SM quarks and charged leptons, it has only VBF ZZ, WW, and $\gamma\gamma$ channels.
- Constraints are generally weaker, but independent of α.
- The WW mode does not provide a useful constraint.


NO CONSTRAINT FROM H30 YET

CWC and Tsumura JHEP 2015

 Signal strength of H₃⁰→ff is significantly enhanced in the mass range between 2M_W and 2M_t:

$$\mu_{FF}^{GGF}[H_3] = (\kappa_F^{H_3})^2 \frac{F_{1/2}^A(M_{H_3})}{F_{1/2}^S(M_{H_3})} \times \frac{\mathcal{B}_F}{\mathcal{B}_F^{SM}(M_{H_3})} \left(1 - \frac{4M_f^2}{M_{H_3}^2}\right)^{-1}$$

• Use these modes to search for H₃⁰ or constrain the model.

5-PLET AT ILC

- Three types of production modes at ILC:
 - Pair production (PP) processes

$$e^+e^- \to Z^*/\gamma^* \to H_5^{++}H_5^{--}$$

 $e^+e^- \to Z^*/\gamma^* \to H_5^+H_5^-$

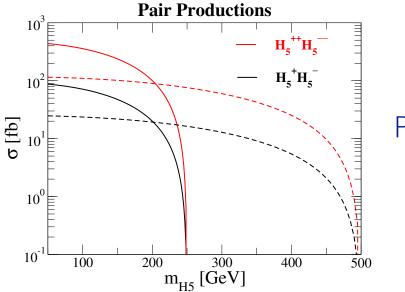
independent of v_{Δ} dominant for small v_{Δ} kinematically limited to $\sqrt{s/2}$

Vector boson associated (VBA) processes

$$e^{+}e^{-} \to Z^{*}/\gamma^{*}/\nu_{e}^{*} \to H_{5}^{\pm\pm}W^{\mp}W^{\mp}$$

 $e^{+}e^{-} \to Z^{*} \to H_{5}^{\pm}W^{\mp}, H_{5}^{0}Z$

depending on v_{Δ} dominant for large v_{Δ} and m_{H5} up to $\sqrt{s} - M_{W,Z}$ involving $H_5^{\pm}W^{\mp}Z$ vertex


Vector boson fusion (VBF) processes

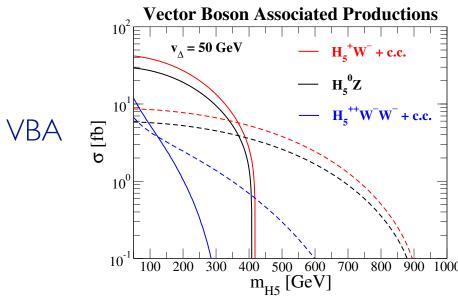
$$e^{+}e^{-} \to H_{5}^{\pm}e^{\mp}\nu_{e}$$

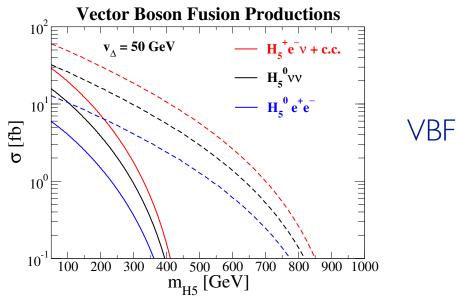
 $e^{+}e^{-} \to H_{5}^{0}e^{+}e^{-} , H_{5}^{0}\nu_{e}\bar{\nu}_{e}$

depending on V_{Δ} dominant for large V_{Δ} and V_{H5} up to V_{Δ} involving V_{5}

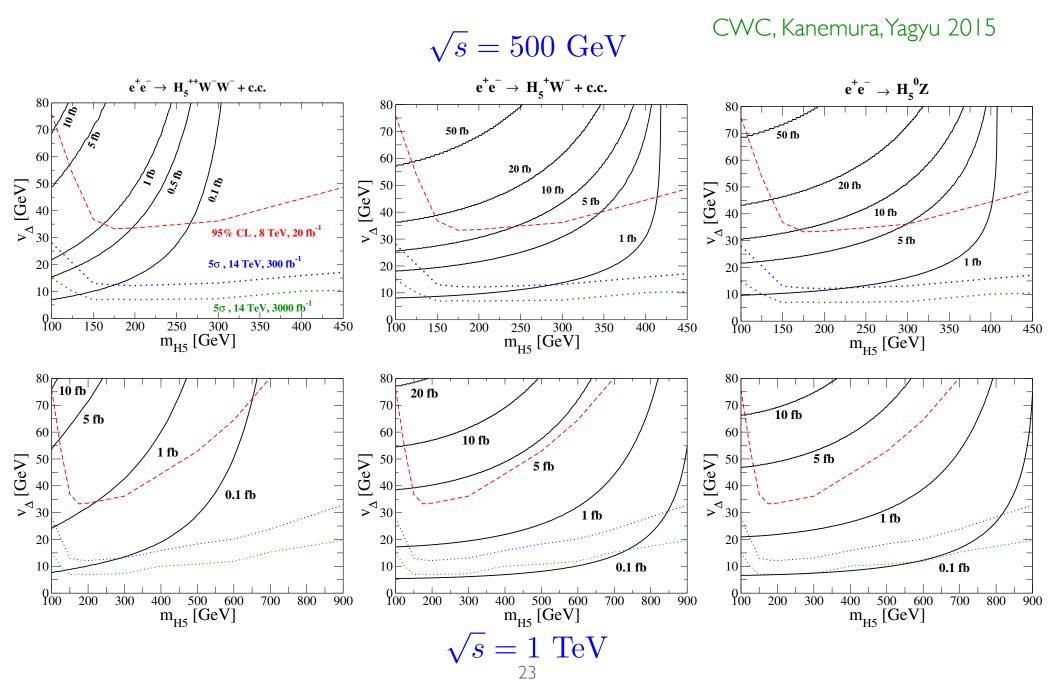
CROSS SECTIONS @ ILC

CWC, Kanemura, Yagyu 2015



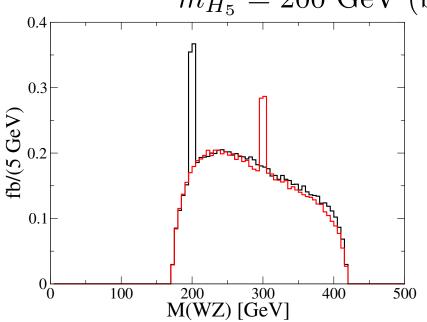

PP

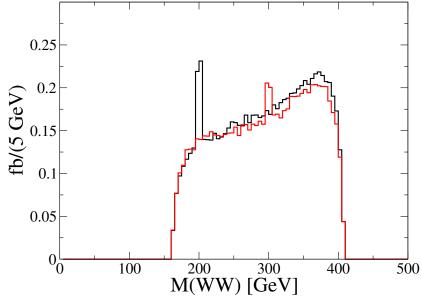
independent of α


 $\sqrt{s} = 500 \text{ GeV (solid)}, 1 \text{ TeV (dashed)}$

22

VBA CROSS SECTIONS @ ILC




INVARIANT MASS DISTRIBUTIONS

CWC, Kanemura, Yagyu 2015

- Invariant mass distributions for subsystems of the e+e-→ W+W-Z process including ISR with scale set at √s.
- Narrow peaks are due to H₅[±] and H₅⁰, respectively.
- Precise measurement of the H₅±W[∓]Z vertex is possible.

 $\sqrt{s}=500~{
m GeV}$ and $v_{\Delta}=30~{
m GeV}$ $m_{H_5}=200~{
m GeV}$ (black) and 300 GeV (red)

SUMMARY

- With SU(2)_L×SU(2)_R-symmetric Higgs potential and vacuum alignment, GM model preserves custodial symmetry, allows a large v_∆, and possibly has hVV couplings stronger than SM's.
- There is an [approximate] mass degeneracy in each of the 3plet, and 5-plet Higgs representations.
- For large v_△, VBF processes are useful for searching for exotic GM Higgs bosons, verifying their mass spectrum, and extracting hVV couplings.
- Latest LHC data are employed to put constraints on the parameter space (v_{Δ} vs m_{H5} or α).
- Synergy between searches of H₅[±] and H₅⁰ at ILC and H₅^{±±} at LHC will make the 5-plet study more comprehensive.

Thank You!