Position resolution from time difference in scintillator strips for the muon system

D. Denisov³, V. Evdokimov², S. Lukić¹

Vinča institute, University of Belgrade, Serbia
Institute for High Energy Physics, Protvino, Russia
Fermi National Accelerator Laboratory, Batavia IL, USA

LCWS 15 November 2-6 2015, Whistler, Canada

- Motivation
- 2 Tests
- Results (Configuration D)
- 4 Summary

Motivation

- Few tests so far of possible muon-system sensors for future colliders
- Instrumented area very large and difficult to reach for maintenance a reliable and economical solution would be of great advantage
- Long scintillator strips (up to \sim 3 m) with SiPM readout interesting for reliability, reasonable construction and operation costs and relatively low number of readout channels
- Measurement of hit position along the strip offers a possibility to resolve multiple hits and limit position uncertainty

Section 2

Tests

Tested strip configurations

- a) MINOS strip with one Kuraray Y-11 WLS fiber
- b) Bicron 404A strip with 7 Kuraray Y-11 WLS fibers
- c) MINOS strip with 4 Bicron BCF-92 WLS fibers
- d) Bicron 404A strip with 7 Bicron BCF-92 WLS fibers

Test setup 1

- \$1 and \$2 are scintillation counters with vacuum PMT.
- S3 and S4 are small-area counters with vacuum PMT, movable along the tested strip. Width of S4 is 2.7 cm.
- SiPM1 and SiPM2 are Hamamatsu S10931-050P photodetectors.
- Triger: S1 ∩ S2 ∩ S3
- Offline selection: Presence of signal in SiPM1, SiPM2 and S4; $E_{S4} > E_{min,Landay}$

Test setup 2

- S1 and S2, SiPM1 and SiPM2 are the same as in setup 1.
- S3 is the *reference* strip with vacuum PMT S31 i S32.
- Triger: S1 ∩ S2 ∩ S31
- Offline selection: Presence of signal in SiPM1, SiPM2 and S32; $E_{\rm S31}+E_{\rm S32}>E_{min,Landau}$

Calibration – amplitude

- SiPM illuminated with LED pulses Driver pulses for LED:
 - Triangular pulse shape,
 - Minimum amplitude to see photons in SiPM $A_{min} = 1.1 \ V$,
 - ullet Pulse length above 1 V level: $t_{pulse} pprox 2.5\,\mathrm{ns}$
- Cross talk calibration using inefficiency (pedestal peak relative area)
- SiPM bias voltage chosen for measurements: $U_{bias} = 71.8 \, \text{V}$ resulting in cross talk factor X = 1.35

Photon yield per muon per SiPM, using selection cuts for muon events (coincidence, $E > E_{min,Landau}$)

Configuration	Photon yield per muon		
	(photoelectrons)		
A	10		
В	19		
С	20		
D	>30		

Configurations ${\it C}$ and ${\it D}$ were selected for time- and position resolution tests.

Correction of the amplitude effect

- ullet Correction for SiPM by fitting the function $\Delta t = C + a/A$ to data.
- ullet Counters with vacuum PMT less affected due to fast signals, lower thresholds and the $E > E_{min.Landau}$ cut

Results (Configuration D)

Sensitivity of $\Delta t/2$ to the muon location

- Measurement in 5 different positions x of S3 and S4
- 7 to 12 hours per position 500 to 1000 events per position after selection

Calibration of location, signal propagation speed

- 5 different positions x of S3 and S4
- Straight-line fit x vs. $\Delta t/2$
- Speed of signal propagation from the slope $v^* = 17.3 \,\mathrm{cm/ns}$
- Position resolution $\sigma_x = v^* \sigma_{\Delta t/2} = 7.7 \, \mathrm{cm}$

- $(t_1 + t_2)/2$ collected in all 5 positions x of S3 and S4
- Gaussian width $\sigma_t = 0.52 \, \mathrm{ns}$

Position calibration, signal propagation speed in setup 2

- Straight line fit x vs. $\Delta t/2$
- Speed of signal propagation $v^* = 17.4 \,\mathrm{cm/ns}$

Position resolution in setup 2

- Position deviation between the tested and the reference strips in configuration D
- Fitted Gaussian width $\sigma = 7.3 \, \text{cm}$

Configuration C

Configuration D

Conf.	side	Yield per μ	σ_{x} (setup 1)	σ_{x} (setup 2)	σ_t	V*
	#	(photoel.)	(cm)	(cm)	(ns)	(cm/ns)
	1	21	14.8	14.8	0.91	18.1
C	2	20	14.0	14.0	0.91	10.1
	1	31	7.7	7.3	0.52	17.2
D	2	36	'.'	1.3	0.52	11.2

Summary

Section 4

Summary

Summary

- Several scintillator+WLS strip configurations tested for photon yield, position and time resolution in 2 setups.
- Light yield up to 36 photoelectrons per muon per SiPM
- Position resolution ~ 7 cm
- Time resolution 0.5 ns per strip
- Non-negligible uncertainties due to the setup
 - → Results are conservative
 - \rightarrow Beam tests needed
- More details can be found in arXiv: 1510.03030

Backup slides

Signal attenuation in scintillator+WLS

- Attenuation length $\lambda = 2.8 \, \mathrm{m}$
- Large relative spread of signal intensity (Poissonian)