ZHH cross section analysis

- prospect of Higgs self-coupling measurement and impact of ecm

Junping Tian, Keisuke Fujii (KEK)

LCWS15, Nov. 2-6, 2015 @ Whistler, B.C., Canada

outline

- o introduction and current prospects at LHC and LCs
- o cross section analysis and the impact of ecm
- prospects when $\lambda \neq \lambda_{SM}$
- o weighting method to enhance sensitivity
- ο λ_{HHH} analysis status at ILC

Motivation to measure Higgs self-coupling $V(\eta_H) = \frac{1}{2}m_H^2 \eta_H^2 + \lambda v \eta_H^3 + \frac{1}{4}\lambda \eta_H^4$

discover the force that makes Higgs condense in vacuum

- direct probe of the Higgs potential
- test the EWSB mechanism
- test electroweak baryogenesis
- large deviation is expected

scale invariant models for EWSB

 $V(\Phi)$

Hashino, Kanemura, Orikasa, arXiv:1508.03245

measurement of Higgs self-coupling @ LHC

LHC Run1: pp—>hh @ ATLAS 95% C.L. upper limit: $\sigma/\sigma_{SM} < 70$ (48)

Analysis	γγbb	$\gamma\gamma WW^*$	bb au au	bbbb	Combined	
Expected	1.0	6.7	1.3	0.62	0.47	arXiv:1509.046
Observed	2.2	11	1.6	0.62	0.69	
Expected	100	680	130	63	48	
Observed	220	1150	160	63	70	

Snowmass Higgs working group: $\delta \lambda_{\text{HHH}} / \lambda \sim 50\% @ 14 \text{ TeV}$, 3000 fb⁻¹ (arXiv: 1310.8361)

LHC talk by C.Vernieri: HH production ~ 1.9σ @ 14 TeV, 3000 fb⁻¹

prospects of Higgs self-coupling @ linear colliders

prospects from full simulation studies:

IL

:		A STATE OF A		Charles and the second second			
	$\Delta \lambda_{HHH} / \lambda_{HHH}$	500 GeV	+ 1 TeV		1.4 TeV	+3 TeV	
C	Snowmass	46%	13%	CLIC	(1.5 ab^{-1})	(2 ab ⁻¹)	
	LIQO		1001		21%	10%	
	H20	27%	10%				
	(ref. H20 arXi		(arXiv: 1307.5288)				
	J. Tian, LC-R	C. Dürig @ AL	C. Dürig @ ALCW15		M. Kurata, LC-REP-2014-025 5		

λннн @LCs: impact of ecm

For ZHH:what would be the optimal energy?For vvHH:how much improvement would be expected?

physics issues: diagrams for double Higgs production

 $\sigma = S\lambda^2 + I\lambda + B$ (signal diagram) (interference) (background diagram)

the sensitivity of λ is determined not just by the apparent total cross section, in fact is determined by S and I term;
if B term dominates, measurement would be very difficult

- B term (green) >> S term (red) —> more difficult than expected
- interference I term (blue) plays an crucial role in both cases; larger I term for vvHH indicates potential better sensitivity in vvHH than ZHH
- For ZHH: clearly ~500-600 GeV is preferred; peak positions of I or S term are smaller than that of B term and the apparent total σ (black)
- For vvHH: dependence on ecm, S term < apparent σ < B term \approx I term

sensitivity of λ to the directly measured σ

$$\frac{\delta\lambda}{\lambda} = F \cdot \frac{\delta\sigma}{\sigma}$$

$$F = \frac{\sigma}{2S\lambda^2 + I\lambda}$$

sensitivity factor

- smaller F means better sensitivity; if only signal diagram, F=0.5
- F in ZHH indeed much worse than F in vvHH
- in both cases F increases significantly when ecm increases

expected precision of λ

- based on the cross sections and sensitivity factors, give two types of expectations
- theoretical precision assuming 100% signal efficiency and no background;
- realistic precision extrapolated from the full detector simulation results at the ILC, ZHH @ 500 GeV and vvHH
 @ 1 TeV
- 4 ab-1 data is assumed; P(-0.8,+0.3) for ZHH; P(-0.8,+0.2) for vvHH

expected precision of λ

- gap of these two expectations —> room of improvement
- for ZHH: 500 GeV is the optimal energy, δλ/λ ~ 6% : 30%, but rather mild dependence between around 500-600 GeV, significantly worse if much lower or higher than that
- for vvHH: significantly better going from 500 GeV to 1 TeV, $\delta\lambda/\lambda\sim10\%$ achievable when ecm >= 1TeV; better precision at higher ecm, but not drastically, from 1 TeV to 3 TeV, improved by 50%

what's the expectation if $\lambda \neq \lambda_{SM}$? @ LCs

- for ZHH, interference is constructive, enhanced λ will increase the total σ, and improve sensitive factor as well, e.g. if λ = 2λ_{SM}, σ increase by 60%, F decease by half, δλ/λ ~15%, —> we may finish the λ story at 500 GeV ILC
- for vvHH, interference is destructive, enhanced λ will decrease σ , minimum when $\lambda \sim 1.5 \lambda_{SM}$, $\delta \lambda / \lambda$ degrade significantly if $\lambda / \lambda_{SM} \in (1.3, 1.7)$
- but if $\lambda < \lambda_{SM}$, more difficult to use ZHH, have to rely on more on vvHH
- two channels are complementary in terms of λ measurement in BSM

what's the expectation if $\lambda \neq \lambda_{SM}$? @ LHC

arXiv:1401.7304

interference is destructive, σ minimum at λ ~ 2.5λ_{SM}; if λ is enhanced, it's going to be very difficult (from snowmass study by 3000 fb-1 @ 14 TeV, significance of double Higgs production is only ~ 2σ, if cross section deceases by a fact of 2~3, very challenging to observe pp—>HH)

resolve the two solutions of λ

$$\sigma = S\lambda^2 + I\lambda + B \longrightarrow \lambda = \frac{-I \pm \sqrt{I^2 - 4SB + 4S\sigma}}{2S}$$

- λ < 0 can be excluded by LHC with 600 fb-1 @ 14 TeV (arxiv: 1301.3492)
- if we don't have constraints by ZHH, the two solutions from vvHH are still possible
- in this sense, λ by ZHH is actually very important (e.g. by 500 GeV data); these two channels are again complementary

which one is the correct solution?

a new general method to improve the sensitivity of λ

$$\frac{d\sigma}{dx} = B(x) + \lambda I(x) + \lambda^2 S(x)$$
irreducible interference self-coupling
servable: weighted cross-section
$$\int d\sigma$$

$$\sigma_w = \int \frac{\mathrm{d}\sigma}{\mathrm{d}x} w(x) \mathrm{d}x$$

equation of the optimal w(x) (variance principle):

$$\sigma(x)w_0(x)\int (I(x) + 2S(x))w_0(x)dx = (I(x) + 2S(x))\int \sigma(x)w_0^2(x)dx$$

general solution:

$$w_0(x) = c \cdot \frac{I(x) + 2S(x)}{\sigma(x)}$$

c: arbitrary normalization factor

improvement of sensitivity by weighting method

(improved sensitivity factor)

F	ZHH @ 500 GeV	ZHH @ 1 TeV	vvHH @ 1TeV
default	1.73	2.62	0.8
by weighting	1.62	1.84	0.73

status of full simulation analysis @ ILC

- DBD full simulation analyses (mH=120 GeV): ZHH @ 500 GeV, vvHH @ 1 TeV
 SGV fast simulation analysis: vvHH @ 1 TeV (consistent with full simulation)
 - task force: C.Duerig, M.Kurata, J.Tian, K.Fujii, J.List
 - update analysis with mH=125 GeV
 - study impact of beam background from $\gamma\gamma$ ->hadrons
 - study impact of beam polarisations
 - improving analysis technique / strategy
 - o isolated lepton tagging
 - o kinematic fitting (see talk by M.Kurata)
 - o optimize cuts for coupling instead of cross section
 - o matrix element method and color-singlet-jet-clustering

summary

- λ_{HHH} is very important to measure, however challenging at both LHC and LCs
- the best expectation we have now, in SM case, δλ/λ~27% at 500 GeV, 10% at 1 TeV at the ILC
- two channels ZHH and vvHH are complementary;
 interference is crucial to determine λ in both channels
- 500 GeV is optimal energy for ZHH; >=1TeV is important for vvHH, the improvement by ecm>1TeV is rather mild due to the increased sensitivity factor
- in some BSM scenario, $\delta\lambda/\lambda$ can be already well determined just at 500 GeV ILC
- improvement of analysis is continuously pursued to fill some gap to the theoretical expectations

summary

• λ_{HHH} is very important to measure, however challenging at

or

 \bigcirc

d

ne

back up

ongoing: investigation of how to see colour correlation

introduce a new variable, jet pull

$$\vec{t} = \sum_{i \in \text{jet}} \frac{p_T^i |r_i|}{p_T^{\text{jet}}} \vec{r_i} \,.$$

20

i stands for constituents of jet; ri is vector from jet axis to particle i in (rapidity, phi) plane

new measure to evaluate jet clustering performance F_{mis}: the fraction of energies which get mis-clustered

dependence of Fmis on number of mini-jet (fixed Njet clustering)

a detailed look into Fmis

most severe mis-clustering happened from 6—>4

development of new color-singlet jet clustering

- mis-clustering is one of the major limiting factor
- δλ/λ could be improved by 40% if we could achieve perfect clustering
- but it's very difficult to improve general jet clustering algorithm
- so far we only know misclustering starts mainly at the step when #mini-jet = 20
- need better algorithm to combine those mini-jets
- idea: deconstruct the who parton shower history, find the combination with largest probability