Optimization of the Combiner Rings for the CLIC DB

Edu Marin emarinla@cern.ch

November 3rd, 2015 LCWS'15, Whistler (CANADA)

Outline

- Motivation
- Previous Design
- New Designs
 - CR1
 - CR2
- Start to End Simulations
- 5 Summary & Outlook

Goal

- Design the Drive Beam Recombination Complex (DBRC) capable of transporting a beam with an energy spread of 1% (rms)
- Keeping $\Delta \epsilon \leq 50\%$ at the entrance of the deccelerator

Strategy

- To replace arc cells of CR1 and CR2 based on TBA by the Chassman-Green cell 1
 - offers lower emittance than TBA
 - requires weaker quadrupoles → smaller chromatic aberrations
 - R_{56} is easily tunable thanks to the short dipole

¹Huang, N. Y. et al. in Proc. 2nd IPAC 2011 (SPAIN), http://accelconf.web.cern.ch/accelconf/IPAC2011/papers/wepc036.pdf

Sketch of DBRC

 $DL \Rightarrow TL1 \Rightarrow CR1 \Rightarrow TL2 \Rightarrow CR2 \Rightarrow TTA$

DBRC Parameters

Parameter	Units	DL	CR1	CR2	LTA
Energy	[GeV]	2.38	2.38	2.38	2.38
Norm. Emittance	$[\mu m]$	150	150	150	150
Energy spread (rms)	%	1	1	1	1
Length	[m]	146	293	439	1216
Combination factor		2	3	4	-
Average current	[A]	8.4	25	100	100
Bunch length	[mm]	1	1	1	1
RF deflector freq.	[GHz]	1.5	2	3	-

β and R_{56}

Motivation

Combiner rings 1 and 2 are based on a TBA cell Delay Line and transfer lines are based on the Chassman-Green cell

Orbit and Dispersion

Motivation

Isochronous tolerance $R_{56}=\pm 1 {\rm cm}$ Injection into CRs is based on bump offset of 2-3 cm (maximum kick from RF kickers)

 η and η' after bump $\approx \pm 0.05$ m and ± 0.01 , respectively

Summary & Outlook

Emittance growth

	[%]	[%]
DL	1	1
TL1	1	1
CR1	16	3
TL2	30	8
CR2	31	10
LTA	43 ²	12

²assuming an initial $\delta p/p$ =0.35% (rms) and σ_z =2 mm. Values obtained from CLIC-CDR v1 http://project-clic-cdr.web.cern.ch/project-CLIC-CDR/

Start to End Simulations

Arc Cell

Motivation

The TBA cell is replaced by a 2 DBA cells connected by 3 quadrupoles to match the Twiss parameters Length of dipoles is adjusted to set B = 0.8 T (1 T in CDR)

 $\Delta \epsilon_{X,Y} \leq 5\%$ per arc cell @ $\Delta p/p=1\%$

CR1

Twiss functions

	β_{X}	$\alpha_{\it X}$	$eta_{m{y}}$	$\alpha_{m{y}}$	η_{X}	R_{56}
	[m]	[rad]	[m]	[rad]	[mm]	[mm]
PLACET	10.01	0.10	6.37	0.17	-4.1	-0.7
CDR	9.92	0.10	6.40	0.17	-2.8	-2.4

Emittance Growth CR1

Initial Beam:
$$\Delta p/p = 1 \%$$
 $\sigma_z = 2 \text{ mm}$ $\gamma \epsilon_{x,y} = 100 \ \mu\text{m}$

Final Emittances (2.5 turns): $\gamma \epsilon_{x} = 111 \ \mu \text{m}, \ \gamma \epsilon_{y} = 107 \ \mu \text{m}$

(PLACET simulation with 5 $10^4 e^-$. Synchrotron radiation ON)

CR2

Summary & Outlook

CR2

Arc Cell

The TBA cell is replaced by a 2 DBA cells connected by 3 quadrupoles to match the Twiss parameters

 $\Delta \epsilon_{x,y} \leq 3\%$ per arc cell @ $\Delta p/p=1\%$

Summary & Outlook

CR2

Twiss functions

	β_{X}	$\alpha_{\it X}$	$\beta_{\pmb{y}}$	$\alpha_{m{y}}$	η_{X}	H_{56}
	[m]	[rad]	[m]	[rad]	[mm]	[mm]
PLACET	10.8	-0.39	11.81	2.76	-70	-5.2
MAD-X	11.6	0.48	11.60	2.71	-57	-3.9

Emittance Growth

Initial Beam: $\Delta p/p=0.9 \%$ $\sigma_z=2 \text{ mm}$ $\gamma \epsilon_{x,y}=100 \ \mu\text{m}$

Start to End Simulations

Final Emittances: $\gamma \epsilon_{x} = 133 \ \mu \text{m} \ \gamma \epsilon_{y} = 110 \ \mu \text{m}$ (assuming no kickers: $\gamma \epsilon_x = 123 \ \mu \text{m} \ \gamma \epsilon_x = 106 \ \mu \text{m} \ \text{@} \ \Delta \text{p/p=1\%}$)

Orbit Bump Turn 3

Orbit and dispersion are closed by means of a pair of sextupole magnets

Twiss

Motivation

Propagation of Twiss functions along DBRC PLACET values obtained from beam distribution (5 \cdot 10 $^4~e^-)$ MADX values obtained by PTC code

	β_{x}	α_{X}	β_{V}	α_{V}
	[m]	[rad]	[m]	[rad]
TL1				
PLACET	9.28	-0.19	7.65	-0.16
MAD-X	10.20	-0.09	6.37	-0.16
CR1				
PLACET	1.88	-0.080	12.74	-1.57
MAD-X	1.89	-0.086	13.34	-1.60
TL2				
PLACET	9.89	1.04	10.39	2.4
MAD-X	9.92	1.03	11.85	2.8
CR2				
PLACET	7.3	-0.6	11.6	2.7
MAD-X	9.9	0.48	11.6	2.7
TTA				
PLACET	7.8	8.0	7.96	0.00
MAD-X	2.1	-0.1	8.0	0.01

 β_{x} , α_{x} , η and η'_{x} are miss-matched at the entrance of TTA

Start-to-End Simulation

- Beam with 0.9% energy spread (rms)
- Orbit and Dispersion deliberately optimized against final emittance @ entrance of each section

Summary

Obtained new designs of

Start to End Simulations

- First results Start-to-end simulations are obtained for a beam with $\Delta p/p=0.85\%$
- Calculated emittance growth @ exit of CR2:

$$\Delta \epsilon_x$$
=42%, $\Delta \epsilon_y$ =26%

• x, p_x -offsets and η_x , η_{p_x} artificially introduced at the entrance of CR1 and CR2

Outlook...

- Design a matching line to provide the expected dispersion at the entrance of CRs
- Further investigation of TL3 and the Turn around loop is required to better understand the source of observed miss-matched