

LCFIPLUS BASIC IDEA AND TOWARDS IMPROVEMENT

Masakazu Kurata

The University of Tokyo

LCWS15, 11/02/2015-11/06/2015

INTRODUCTION

- Flavor tagging is one of important analysis components for all the ILC physics programs:
 - For Higgs physics: H→bb, H→cc
 - For top physics: t→bW
 - For BSM: HA→bbbb
- Important topics for good flavor tag:
 - Well reconstruct secondary and tertiary vertices from B/D decays
 - Good operation in the environment with many jets
 - Good separation among b/c/uds jets
- LCFIPlus package has been developed:
 - Consists of:
 - Vertex finder primary and secondary/tertiary vertex finding
 - Jet finder(Jet Clustering)
 - Flavor tagger
 - Optimized for ILC(e.g. Higgs self-coupling@500GeV)

REQUIREMENTS FOR FLAVOR TAGGING

B/D meson can fly before their decay due to their masses

b-jet

We can identify heavy flavor jets by finding secondary /tertiary vertices in jets:

- So, we need:
 - Good impact parameter resolution
 - Good quality track measurement as much as possible,
 - High purity lepton identification
- ILD/SiD have:
 - Vertex detector: good impact parameter measurement($<5 \mu$ m)
 - Main tracker (ILD: TPC SiD: Silicon tracker): good momentum resolution

Calorimeters can be used for lepton identification

D decay

B decay

FLOW CHART FOR FLAVOR TAGGING IN LCFIPLUS

Primary Vertex Finder

- Good track selection for vertexing
- Find Primary vertex

Secondary Vertex Finder

Find secondary vertex candidates

JetFinder(Jet Clustering)

Cluster PFOs into Jets

Jet Vertex Refiner

Integrate vertices in jets into upto 2

→corresponds to B/D vertices

Flavor Tagging

Jet flavor is evaluated

→MVA is used for flavor separation

- Vertex finding strategy of LCFIPlus:
 - Vertex finding first, Jet finding second
 - · All the vertex candidates in a event are checked
 - Jet finding with replaced particles
 - → Reconstructed vertices are regarded as one particle

IMPACT ON VERTEX FINDING STRATEGY

- o LCFIPlus: Vertex finding first, Jet finding second
 - This strategy provides:
 - Fewer fake track rate(coming from primary vertex)
 - Better vertex finding efficiency(both B/D vertices)
 - V0 rejection efficiency is improved

(-) 7III	Track origin				
(a) $ZHH \rightarrow qqbbbb$	Primary	b hadron	c hadron	Other	
Number of all reconstructed tracks	67575	12912	15246	4087	
Number of tracks used by ZVTOPin good vertices	1162	8534 8248	10404 10103	999	LoI
Number of tracks used by our original vertex finderin good vertices	617	8717 8551	10529 10333	358	LCFIPI
(b) tt bhagag	Track origin				
(b) $t\bar{t} \rightarrow bbqqqq$	Primary	b hadron	c hadron	Other	
Number of all reconstructed tracks	74504	8945	12602	4219	
Number of tracks used by ZVTOP	920	5999	8353	_1024	
in good vertices	-	5830	8137	-	
Number of tracks used by our original vertex finder	420	6161	8447	341	
in good vertices	-	6060	8279	-	

FLAVOR TAGGER

- Use Multivariate Analysis(MVA)
 - Classifier: Boosted Decision Tree(BDT)
 - For Flavor separation of b/c/uds jets
 - Categorize using vertex condition in a jet and train independently
 - →This categorization is coming from JetVertexRefiner

- 2 output type: b-likeliness and c-likeliness
- Example: distribution of each Higgs decay mode:

Performance@Z mass

Signal efficiency vs. background efficiency

Can form better classifier for any operation points

IMPACT ON HIGGS SELF-COUPLING

- B-tagging is crucial to suppress ttbar events in Higgs Self-coupling analysis
 - ttbar has huge cross section(S/N~1/3000 @500GeV)
 - Suppression using kinematics is not enough
 - HH→(bb)(bb): 4 b-tagging available ttbar: tt→bb(xxxx) 2 b-tagging

FURTHER PLANS FOR FLAVOR TAGGING IMPROVEMENT

LCFIPLUS IMPROVEMENT

- For better flavor tagger, we need
 - Find secondary/tertiary vertices as many as possible
 - Perfect reconstruction of B/D meson mass
 - Perfect attachment of charged particles
 - Recover lost component(neutrals)
 - Better variables which can separate jet flavors
- We found that we can acquire flavor tagging improvement:
 - Vertex finding efficiency improvement → introduce a new algorithm
 - Vertex Mass Recovery \rightarrow using escaping π^{0} s
 - Better flavor separation(don't mention in this talk)
- Much help is necessary!:
 - Particle ID is one of the key to flavor tagging improvement
 - To classify vertices
 - Pi0 reconstruction(γ pairing) is other key for vertex mass recovery
 - o First of all, pi0 is necessary!

ADAPTIVE VERTEX FITTING

- To introduce the effect of multi-vertex fitting
 - Introduce weight function to estimate vertex which a track belongs to
 - Weight function definition: k-th track's weight on n-th vertex

$$w_{nk} = \frac{e^{-\chi_{nk}^2/2T}}{e^{-\chi_{\text{cut}}^2/2T} + \sum_{i=1}^N e^{-\chi_{ik}^2/2T}}$$

- Parameter: temperature T
 - If T very small, decision is like χ 2 minimization(almost same as DBD LCFIPlus)
 - If T large, multi-vertex effect becomes large
- In multi-vertex environment, weight on certain vertex will degrade
- →becomes harder to attach tracks to vertices in multi-vertex environment
- →can reject fake tracks well!

the track quality selection

Thanks to weight function, we can loosen

→vertex finding eff. will be improved!

Weight of track "k" on vertex "n"

IMPACT OF ADAPTIVE VERTEX FITTING

- Common parameters are set at same values for comparison
- Same event sample(qqHH sample@500GeV) 19889 events
- 6 jet clustering, jet matching with MCtruth is performed
- Num. of jets with vertex:

method	bjet with 2vtx	bjet with 1+1vtx	bjet with 1vtx	total
DBD LCFIPlus	10586	9111	12844	32541
AVF	13179	6360	13375	32914

- \circ Total jets with vtx: $\sim 1.1\%$ increased
 - Jets with 2vtx: ~21% increased → good for bjet ID!
 - Jets with 1vtx: ~3% increased → good for uds jet separartion!
- Fake track rate per vtx: how many fake tracks contaminate vertices?
 - Almost same slightly better!

method	bjet with 2vtx	bjet with 1+1vtx	bjet with 1vtx
DBD LCFIPlus	0.029 ± 0.001	0.013 ± 0.0012	0.058 ± 0.002
AVF	0.028 ± 0.001	0.008 ± 0.0008	0.058 ± 0.002

VERTEX MASS RECOVERY USING PIOS

- Using pi0s which escape from vertices
 - Need to choose good pi0 candidates -construct pi0 vertex finder
 - Key issue -pi0 kinematics, very collinear to vertex direction

- Particle ID is the other key to classify vertices
 - Different particle patterns have different vertex mass patterns
- Construct Pi0 Vertex finder using MVA
 - Identify which vertex pi0s are coming from

VTX MASSES OF BJETS IN HIGGS SELF-COUPLING

- Vtx mass distributions for each vertex pattern(ntrk)
 - These results are the outputs of LCFIPlus(unofficial ver.)!
 - Difference is limited by mis-pairing of gammas and mis-attachment of pi0s

VERTEX MASS RECOVERY EFFECT ON FLAVOR TAGGING

- Construct a "toy" flavor tagger
 - Input variables are obtained from LCFIPlus
 - Input variable selection is too primitive!
 - Only vertex mass is replaced to recovered vertex mass
 - Compare with ROC curve

- Vertex is created using DBD LCFIPlus vertex finding
 - need to check AVF case

SUMMARY AND PROSPECTS

- LCFIPlus has been successful for DBD physics analysis
 - Vertex finding first, jet finding second approach provides
 - Better vertex finding
 - o Better fake Rejection
 - Finally, better jet flavor separation!

• Prospects:

- There is much room to improve!
- So far, AVF will provide $\sim 1\%$ improvement of vertex finding efficiency in bjets
 - Jets with 2vtx well increased better for b jet ID!
 - Fake rejection will be same slightly better!
- Vertex mass recovery using pi0s is reasonable
 - Will provide better flavor tagger using recovered vertex mass
 - o Pi0 reco. Improvement will give better vertex mass recovery!
- Finally, incorporate all the ideas and check the final flavor tagging effs.in LCFIPlus!

BACK UPS

HISTORY OF FLAVOR TAGGER DEVELOPMENT

- \circ \sim 2009 LCFIVertex [NIM A 610 573]
 - Used in ILC LoI and CLIC CDR physics analyses

- 2010∼ LCFIPlus has been developed
 - Used in DBD physics analyses for both ILD and SiD
 - Reference: 1506:08371
 - NIM paper will be soon!

- Working group was re-organized for further improvements
 - Working for legacies from DBD ver. LCFIPlus
 - Tackling for flavor tagging improvement

VERTEX FINDING OF C JETS

- o Common parameters are set at same values for comparison
- Same event sample(nnH sample@500GeV) 99432 events
 - H→cc: 6461 events
- o 2 jet clustering, jet matching with MCtruth is performed
- Num. of vertices

method	cjet with 2vtx	cjet with 1+1vtx	cjet with 1vtx	total
DBD LCFIPlus	48	149	6261	6458
AVF	59	141	6327	6527

- Total: ∼1% increased
- Vertex mis-ID eff. is increased(but, 2vtx jet has pure vertices)
 - Though num. of vertices is small
 - →need additional selection for singletrk? (e.g.)vertex mass?)
- Fake track rate per vtx:

method	cjet with 2vtx	cjet with 1+1vtx	cjet with 1vtx
BDB LCFIPlus	0.00 ± 0.00	0.012 ± 0.006	0.0014 ± 0.004
AVF	0.00 ± 0.00	0.018 ± 0.007	0.0013 ± 0.004

TRACK MVA(BNESS)

- - Signal: tracks which come from B mesons or B baryons
 - Background: tracks produced in hadronization process
- Most significant tracks with both plus and minus signed impact parameters in a jet are collected

• Significance: $sig = \sqrt{(\frac{d_0}{\sigma})^2 + (\frac{z_0}{\sigma})^2}$

VTX MASSES

- Vtx mass distributions for each vertex pattern(ntrk)
 - not so bad
 - Difference is coming from mis-pairing of gammas and mis-attachment of pi0s

DE/DX FROM TPC

- Fluctuation of dE/dx using various type of tracks
 - Truncation method is used to avoid landau tail
 - Fluctuations of each particle/each momentum range in simulation: 3 (<5)%!!
 TDR goal: 5%
 - Including detector effect is necessary

- Momentum dependence of dE/dx
 for each particle
 - Polar angle dependence corrected
 - Num. of Hits dependence corrected
 - Scale to $\left\langle \frac{dE}{dx} \right\rangle = 1.0$ for MIP pion

Can check detector R effect
 on dE/dx easily(But, detector effect necessary?)

PARTICLE ID

- New variables make Particle ID available —construct Particle ID
- Overall ID efficiency using tracks in jets:
 - Electron can be identified almost perfectly(>90%)

p (GeV/c)

• Muon ID eff. is \sim 70% \rightarrow due to low energy muons(μ / π separation)

p (GeV/c)