Overview of the E-driven ILC Positron Source

Masao KURIKI (Hiroshima University)

Ŀ•

Basic Idea

- Number of positron per second for ILC is 50 times more than that for SLC.
- The target is easily damaged by heat load.
- Undulator: Only gamma rays (no Brems) to relax the heat load, but the beam format is fixed 2600 bunches in 1ms.
- E-driven: Expand "the positron pulse" to relax instantaneous heat rate, 2600 bunches in 63ms.
 - The positron is generated in 20 pulses which contains 130 bunches.
 - The pulse is repeated in 300Hz only for 63 ms of 200ms 5Hz operation period.

2-6 November 2015 LCWS2015, Whistler, Canada

LINEAR COLLIDER COLLABORATION

E-driven ILC Positron Source Configuration

2-6 November 2015

Electron Driver

- 4.8 GeV Electron beam in the format with 3.8 nC bunch charge.
- S-band Photo-cathode RF gun for the beam generation.
- 120 of 3m S-band TW structures for the acceleration.
- 80 MW klystron-modulator drives 2 structures giving 40.1 MV/3m with 0.6A beam loading.

Lattice configuration	Number of cells	cell length	section length	Section energy
4Q + 2S	6	8.0 m	48.0 m	$481 { m MeV}$
4Q + 4S	27	$14.4 \mathrm{m}$	$388.8 \mathrm{\ m}$	$4330~{\rm MeV}$

2-6 November 2015

Target

- W-Re 14mm thick.
- 5 m/s tangential speed rotation (180 rpm, 0.5m radius) in vacuum.
- Water cooling through channel.
- Vacuum seal with ferrofluid.

2-6 November 2015

Seal performance

- Leak rate $2x10^{-7}$ Pa.m³/s at 1000 RPM.
- 1000 I/s pump capacity is enough to maintain UHV for accelerator.
- 1.5 MGy/year is expected for the seal. Irradiation test was performed at JAEA Takasaki lab..
- F-oil : Dissociation/degradation occurred at low dose, 0.27 MGy. No hope.
- CN-oil: 4.7 M. Gy. Viscosity increased, but NO dissociation degradation occurred. No additional leak was found with the irradiated seal at 0-600 RPM.

Rigaku

Rotation target design study

FY2014

Indirect Cooling

Rigaku

FY2014

Rotation target design study

I Direct Cooling

II Indirect Cooling

Conclusion: Indirect cooling is better.

LINEAR COLLIDER COLLABORATION

Flux Concentrator (P. Martyshkin)

- Flux Concentrator for AMD (Adiabatic Matching Device)
- 16 mm aperture
- 5 Tesla Peak field, 40mT trans.
- 25 kW ohmic loss.

Positron Capture Linac

- L-band SW structure designed by J. Wang (SLAC) for the undulator capture section is employed.
- Two structures are driven by one 50 MM klystron.

2-6 November 2015

Capture Simulation

- Beam loading current is dynamically changed,
 - Bunching,
 - Lost particles
- For each cells, the accelerator gradient is calculated with IBL(t)

 $I_{BL} = \frac{1}{t_b} \sum q_i \cos\left(\omega t_i - k z_i\right)$

• 14 RF modules (28 L-band SW) makes the average energy of positron 250 MeV.

2-6 November 2015

Booster

- A first half is implemented by L-band acc. And the last half is by S-band.
- 50MW L-band Klystron drives two L-band acc.
- 80MW S-band Klystron drives two S-band acc.

Energy Compressor

- DR longitudinal acceptance (±35mm in z, ±0.75% in $\delta \pm \pm$) which are too wide in z and too narrow in $f \pm \pm$.
- Energy compressor makes a good matching to the acceptance.
- Energy Compressor consists from chicane and 5 Lband RF.

2-6 November 2015

$$\left.\frac{z}{0.035}\right|^2 + \left(\frac{\delta}{0.0075}\right)^2 < 1$$

 $\gamma A_x + \gamma A_y < 0.07$

The typical yield was 1.25.

Electron intensity is normalized giving 3.0e+10 positron /bunch In DR dynamic aperture.

2-6 November 2015

Cooling Water

- Cooling water capability is estimated according to the power loss in RF cavity and RF load.
- (T<0.1K for RF cavity and dT=11K for RF load (TDR specification).
- By employing counter flows in RF cavity, T_{out}-T_{in}=10K is acceptable for dT~0.05(Ker tube)

2-6 November 2015

- L-band SW
 (per tube)
- L-band TW (per tube)
- 2m S-band TW (per tube)
- 3m S-band TW (per tube)

Beam current (A)	$P_{acc}(kW)$	V_{acc} (l/min)	Pload(kW) V _{load} (l/n	min)
0.1	3.32	4.75	5.4	9 7.13	
0.5	1.79	2.55	3.4	6 4.49	
1.0	1.08	1.54	2.4	5 3.18	
1.5	0.656	0.937	1.7	2.31	
2.0	0.376	0.537	1.2	27 1.65	
Beam current (A)	$P_{acc}(kW)$	V_{acc} (l/min)	P_{load}	V_{load} (l/min)	
0.00	2.16	3.08	3.15	4.09	
0.50	1.66	2.38	2.42	3.14	
0.80	1.40	2.00	2.04	2.65	
1.00	1.23	1.76	1.80	2.34	
1.50	0.867	1.24	1.27	1.65	
Beam current (A)	$P_{acc}(kW)$	V_{acc} (l/min)	P_{load}	V_{load} (l/min)	
0.00	2.53	3.61	2.67	3.47	
0.50	1.90	2.71	2.01	2.61	
0.80	1.57	2.24	1.66	2.16	
1.00	1.36	1.95	1.44	1.87	
1.50	0.91	1.31	0.97	1.26	
Beam current (A)	$P_{acc}(kW)$	V_{acc} (l/min)	P_{load}	V_{load} (l/min)	
		F 00		0.07	
0.00	3.72	5.32	1.75	2.27	
0.00 0.50	$\begin{array}{c} 3.72 \\ 2.04 \end{array}$	$5.32 \\ 2.92$	1.75 0.96	$\frac{2.27}{1.25}$	
0.00 0.50 0.60	$3.72 \\ 2.04 \\ 1.77$	$5.32 \\ 2.92 \\ 2.52$	1.75 0.96 0.83	2.27 1.25 1.08	
$0.00 \\ 0.50 \\ 0.60 \\ 1.00$	3.72 2.04 1.77 0.86	5.32 2.92 2.52 1.23	1.75 0.96 0.83 0.41	2.27 1.25 1.08 0.53	

2-6 November 2015

Item	Cooling water (l/min)	Cooling water max (l/min)
L-band SW Acc.	43	133
L-band SW load	89	200
L-band TW Acc.	242	373
L-band TW load	321	495
S-band 2 m TW Acc.	170	274
S-band 2 m TW load	164	264
S-band 3 m TW Acc.	307	650
S-band 3 m TW load	132	277
Total	1470	2670

RF unit

Component	Specifications	Number (1 by 1)	Number $(2 \text{ by } 1)$
Accelerator	1.27 m L-band SW	28	28
Accelerator	2.0 m L-band TW	71	116 + 4
Accelerator	2.0 m S-band TW	48	76
Accelerator	3.0 m S-band TW	120	120
Klystron	50 MW L-band	85	74
Klystron	80 MW S-band	108	98

- High density of power units in the service tunnel is expected. (6.45 m/unit, average)
- Compact unit design with a good accessibility is mandatory.

Klystron (S. Fukuda)

- L band (1.3 GHz) with 50 MW-100MW and S band klystron(2.6 GHz) with 80-150MW are possible, but so far there are no commercially available klystrons.
- In order to reduce the numbers of RF source, higher output power is desirable, while requirements for minimum R&D lead to limited choice.
- For L-band, we assume a 50 MW tube, since design of this power level is not difficult.
- For S-band, we assume a 80 MW tube, since existing 2.856GHz 80 MW klystron is widely used, and frequency scaling from 2.856GHz to 2.6GHz is not so difficult. (Comments from Toshiba engineer)

INEAR COLLIDER COLLABORATION

Pulse Modulator (S. Fukuda)

- Solid sate modulator has a large merits
 - compact
 - maintenance ability

COMPARISON PFN - SOLID STATE TECHNOLOGY

n and Modulator for 300 Hz

RF Unit

٠

L-band Unit

Main Parameters	Value	Unit	
RF Frequency	1300	MHZ	
Peak Power	50	MW	
Average RF Power	22.5 (0.3) ¹	kW	
Pulse width	0.5 - 1.5	μs	
Pulse Repetition	1 - 300 (3.8)1	Hz	

² Corresponding to 3,8Hz operation

S-band Unit

Main Parameters	Value	•	Unit
RF Frequency	2856	2856	
Peak Power	80		MW
Average RF Power	36	(0.4)1	kW
Pulse width	0.5 -	1.5	μs
Pulse Repetition	1 - 30	00 (3.8)1	Hz

¹ Corresponding to 3,8Hz operation

2-6 November 2015

RF Unit Layout

Positron Capture Linac (highest density)

2-6 November 2015

Parameter Summary

Parameter	Value	Unit
Drive Beam Energy	4.8	GeV
Target material	W-Re	
Target thicknesss	14	mm
Beam Size (rms)	4.0	mm
AMD peak field	5.0	Т
RAMD (smallest aperture of AMD, 2a)	16.0	mm
Average gradient (MV/m)	8.4 – 22	MV/m
Accelerator Aperture (2a)	60	mm
Solenoid	0.5	Т
Booster	Hybrid (L-band + S-band)	

2-6 November 2015

2-6 November 2015

Summary

- As a technical backup, E-driven ILC positron source has been designed.
- To relax the heat load on the target, positrons are generated in 63 ms of 200 ms.
- 14mm thick W-Re rotating target design is in progress.
- AMD (5T, 2a=16mm) is designed.
- Electron Driver, Positron Capture Linac, and Booster are designed based on off-the-shelf RF components.
- Required cooling water capability was estimated up to 2700 l/min.
- RF power module was designed. The density of the module along the service tunnel is high, but acceptable.