Dark Matter Search at ILC

- 1. Homework from MEXT
- 2. Experimental Issues
 - a) Mono-photons
 - b) 2-fermion process

Tomohiko Tanabe (U. Tokyo)

November 4, 2015 LCWS2015 @ Whistler [ILD/SiD Joint Session]

On Fri, Oct 23, 2015 at 9:01 PM, Keisuke Fujii <keisuke.fujii@kek.jp> wrote:

The MEXT ILC advisory panel requested a clear vision for new particle discovery potential. They required prospects for new particle discoveries in each of the following three cases:

- 1) LHC finds no new particle.
- 2) LHC finds a (strongly interacting) new particle (say 1.6 TeV gluino for instance), which implies the existence of different kinds of new particle (say Ewkinos) within the ILC's reach.
- 3) LHC finds a (strongly interacting) new particle (say 2.0 TeV gluino for instance), which implies m_bino beyond the reach of the 500GeV ILC.

Dark Matter Searches

Complementary ways to search for DM

Dark Matter Searches

different initial state → complementary sensitivity to DM

Dark Matter Searches

different initial state → complementary sensitivity to DM

Mass Spectra

ILC's unique role: determine if new particle is actually DM

See next talk by M. Berggren, stau coannihilation scenario.

Mass Spectra

ILC's unique role: discovery potential for compressed spectra & determine if new particle is actually DM

See next talk by M. Berggren, light Higgsinos in natural SUSY scenario.

Mass Spectra

LHC and ILC have complementary capabilities in DM searches.

e.g.) Leptophilic DM

ILC has unique sensitivity to electron-DM coupling

Couplings to leptons only

[Fox, Harnik, Kopp, Tsai, 1103.0240]

ILC 500 GeV [Chae, Perelstein, 1211.4008]

What if...?

Effective Field Theory

New physics interaction mediated by a heavy particle can be integrated out to give a four-point contact interaction:

EFT is valid for $M_{med} >> 2M_{DM}$; identify:

$$\Lambda = M/\sqrt{g_f g_\chi}$$

^{*}Outside the domain of validity, must take into account effects of on-shell resonance enhancement and off-shell production.

Effective Field Theory

New physics interaction mediated by a heavy particle can be integrated out to give a four-point contact interaction:

^{*}t-channel processes may also exist

Dark Matter Search at ILC

- 1. Homework from MEXT
- 2. Experimental Issues
 - a) Mono-photons
 - b) 2-fermion process

Mono-photons

Signal:

WIMP pair production with ISR photon

$$e+e- \rightarrow DM DM y$$

- Initial state radiation (ISR) photon
- Missing energy + missing momentum

Observables: $\mathbf{E_{v'}} \, \mathbf{\theta_{v}}$

DM mass reach $\sim \sqrt{s/2}$

Backgrounds:

Radiative neutrino production

Contribution will be known / can be calibrated.

Bhabha scattering

$$e+e- \rightarrow e+e- \gamma$$

where the electrons go down the beam pipe undetected. Coverage of forward detectors crucial.

[C.Bartels, Ph.D. Thesis at DESY]

Status of Simulation

Geant4-based full simulation study

- Publication:
 C. Bartels, M. Berggren, J. List, EPJC 72:2213 [arXiv:1206.6639]
- $\sqrt{s} = 500 \text{ GeV}$
- 1 GeV < M_{WIMP} < 250 GeV
- WHIZARD 1.96
- ilcsoft v01-06
- Beam parameters: RDR
- Detector models: LDC_PrimeSc_02, ILD_00

Update plan:

 Other √s, WHIZARD 2, latest software tools, TDR parameters, ILD_v1_o5 model

Application: EFT

Interpretation in terms of effective operators

[A. Chaus, J. List, M. Titov]

Extrapolation to other \sqrt{s}

[M. Habermehl, J. List] See: AWLC2015 talk by Habermehl

Machinery available to produce sensitivity plots in terms of EFT.

Tasklist for mono-photon analysis

- Beam energy spectrum currently the largest source of systematics:
 - New method developed to estimate this from measured beam parameters [M.Habermehl, J.List]
- BeamCal reconstruction:
 - Crucial for rejecting Bhabha events
 - Tuning for ILC is in progress [M.Habermehl]
- Ongoing work to exploit new development in the software:
 - WHIZARD2
 - Newly-tuned PandoraPFA

For details, please see my presentation on Wednesday in the Sim/Det/Rec session.

Dark Matter Search at ILC

- 1. Homework from MEXT
- 2. Experimental Issues
 - a) Mono-photons
 - b) 2-fermion process <

e+e- → 2 fermion process

- e+e- → ff
 - with f = u/d/s, c, b, t, e, μ , τ
 - e+e- → WW, ZZ may also be useful

Observables:

- Polarized cross sections
- Forward backward asymmetries
 (or equivalently differential cross section)
- The large cross section of these events implies measurements will quickly become systematically limited. Need to demonstrate control of all the relevant systematics; it will immediately pay off!

	Z' study [TDR]	Baseline [Snowmass]	LumiUp [Snowmass]
Luminosity	0.2%	0.1%	0.05%
Polarization	0.25%	0.1%	0.05%
b-tagging	0.5%	0.3%	0.15%

$e+e-\rightarrow 2f$ [SUSY DM example]

250

[Harigaya, Ichikawa, Kundu, Matsumoto & Shirai 1504.03402]

Binned likelihood analysis of differential cross sections, comparing expected number of events in BSM vs. that of SM.

Efficiencies assumed:

leptons 100%, b-jet 80%, c-jet 50%100

Other assumptions P(e-,e+) = (-0.8,+0)

P(e-,e+) = (-0.8,+0.6), Lumi = 3 ab-1²⁰⁰

Indirect reach significantly higher than direct search

if systematics is under control

e.g. for $\sqrt{s}=500$ GeV, e+e- $\rightarrow \mu+\mu$ -: Wino mass reach = 350 GeV (for total systematics 0.3%)

Summary

Dark Matter search:

Collider search complementary with direct detection / indirect detection

Advantages of ILC in DM studies:

- Electron-DM coupling ("leptophilic DM")
- Compressed spectra (challenging for LHC) → Next talk by M. Berggren
- Once discovered, ILC can determine
 - Coupling structure, via beam polarization
 - Cross sections → compare with relic density

Methods to search for DM at the ILC:

- Mono-photons
 - Direct mass reach ~ √s/2
 - Update is underway, exploiting new development in software.
- e+e- → 2f
 - Indirect mass reach potentially higher than √s/2 if systematics can be controlled
 - Dedicated studies on systematics are desired

Additional Slides

4f interaction [Leptophilic DM]

[Feritas, Westhoff 1408.1959]

- $\sqrt{s}=1 \text{ TeV}$
- Lumi = 500 fb-1
- P(e-,e+)=(+0.8,+0.6)

Vector DM & Fermion Mediator