CLIC vertex and tracking system: input from detector optimisation studies

LCWS 2015
CLICdp meeting
November 5th, 2015
Whistler

Dominik Dannheim, Rosa Simoniello (CERN)

Outline

Constraints from backgrounds:

Inner radius, beam pipe, forward acceptance; cell sizes

- Vertex-detector layout optimisation
- Tracker layout optimisation
- Proposal for future studies

Inner radius, beam pipe, fwd acceptance

- High rate of forward-peaked background events, mostly e⁺e⁻ pairs
- > constrains inner radius of vertex detector
 - R_i~31 mm (~3% train occupancy for B=4 T and √s=3 TeV)
- → constrains beam pipe layout:
 - conical forward region pointing towards interaction point
 - thick steel sections to absorb back-scattered particles
- → constrains forward acceptance (with LumiCal acceptance and air cooling constraints)
 - $\theta_{min} \sim 7^{\circ}$
- These appear to be rather hard constraints leaving not much room for improvement, unless we find another way to reduce back-scatters (w/o the thick beam pipe pointing to IP)

Vertex-detector cell sizes

- Vertex-detector readout granularity driven by:
 - Background occupancies → not more than a few percent per bunch train
 - Incoherent e⁺e⁻ pairs and γγ→hadrons
 - For 25 μ m pixel pitch: ~ 3-5% train occupancy in innermost layers (dominated by direct hits thanks to forward-region optimisation)
 - Safety factors of 5 (incoh.pairs) and 2 ($\gamma\gamma\rightarrow$ hadrons) assumed, cluster size 5 (conservative!)
 - Background levels pose rather hard constraint, not much room for improvement
 - Single-point resolution → ~3 μm
 - Technology dependent
 - Barely achievable with 25 μm pixel pitch and 50 μm sensor thickness

Outer tracker cell sizes

- Similar considerations as in vertex-detector region
- Single-point resolution goal in Rφ:
 - $7 \mu m \rightarrow \sim 50 \mu m \text{ width}$
- Background occupancies drive strip (pixel) length:
 ~3% occupancy → 1-10 mm length,
 depending on layer radius

Main tracker cell sizes

Beam-induced background hits from γγ→hadr. and incoh. pairs

M. Munker, A. Nürnberg

Vertex-detector layout optimisation

- Optimisation studies performed so far:
 - Fast simulation (LiC toy) → impact parameter resolution as function of energy, angle
 - Full simulation with LCFI plus → flavour-tagging performance as function of energy, angle
 - Parametrised study for Hvv benchmark → impact of flavour-tagging on physics analysis
- Results in a nutshell:
 - Large impact on performance: distance of innermost layer to IP, material budget, resolution
 - Small impact on performance: arrangement of layers, short vs long barrel, spiral endcaps
 - Compact arrangement of layers is favorable for high-momentum particles
- Tracker was included in studies, but tracker geometry was not varied
- In particular: no studies of tracker performance in view of late decays (beyond vertex detector)

Tracker layout optimisation

- CDR tracker layouts were taken over from ILD/SiD and (re-)optimised for:
 - uniform coverage
 - maximum forward acceptance (see above)
- Current CLIC tracker layout is SiD like (silicon only) and takes into account engineering and other constraints:
 - more material for supports and cabling: ~2%X0 per layer instead of 1%X0
 - more realistic gaps for services
 - longer forward region, in order to improve momentum resolution for forward tracks
 - larger barrel radius (1.45 m instead of 1.25 m), in order to improve momentum resolution
 - higher granularity in z and R coordinates (see above)
 - under study: extra forward disk, to improve track extrapolation in high-background environment (see below)?
 - to be studied: extra barrel layer, to improve impact-parameter resolution for late decays and mitigate effect of missing hits in overlap regions?

Material budget

	B1	B2	В3	B4	B 5
-		_	2.0 6		_

"Optimistic" case (similar to implementation in full simulation model) for 10
 GeV muons ~25% worse than CDR

Radius of first layer

 Worsening of impact parameter resolution when moving the first tracker layer out

Extra endcap disk

- Driven by occupancy requirements → How many hits fall in the area defined by the track extrapolation errors?
- If we want less than few %
 bkg an extra layer is needed
 (rearrangement of the layers
 will cause large extrapolation
 for the other layers → it does
 not solve the problem even if
 bkg decreases with R)
- If we want less than 1% bkg the extra disk needs to be pixelated
- No problem for mechanics

Proposal for future studies

Optimize tagging performance for late decay vertices from strongly boosted heavy flavored hadrons:

- Easy: Study fast-simulation impact-parameter performance for:
 - reduced number of vertex hits (including tracker standalone)
 [quick check this morning: 150 GeV muons d0 resolution worsens from 1.6 μm to 11 μm when removing hits from vertex detector. Is this still good enough?]
 - different tracker geometries and resolutions
 - increase vertex-detector radius vs. decreasing tracker inner layer
 - extra vertex layer vs. extra tracker layer
 - note: extra tracker layer is anyway under consideration, because the cooling system favors a geometry w/o overlapping modules (see Andreas' talk), leading to inefficient regions between modules that could be compensated for with an extra layer
- More difficult: Full-simulation flavor-tagging performance studies
 - Re-do previous studies with improved tracking: allow for missing hits in all vertex layers (alternatively: bypass pattern recognition based on Monte Carlo true information)
 - Same as above, with different geometries
 - Results should tell us what the required impact-parameter resolution for late decays is
- Rather long term: Physics benchmark studies
 - Guidance for fast-simulation studies: which kinematic region is most important? Trade-off between early and late decays? (see Philipp's talk, could partially be done on generator level?)
 - Impact of flavor-tagging performance on analysis results (needs full simulation)

Additional material

Hit density in vertex region

diaguagian

Hit density at R=29 mm

3 TeV, incoh. pairs: charged particles / mm^2 / bx (volume flux) at R=29 mm

Forward acceptance

				With 10 mm air	With 5 mm air
		With 10 mm air	With 5 mm air	inlet, same	inlet, same
Geometry	CLIC_ILD_CDR	inlet, same z edge	inlet, same z edge	accept. angle	accept. angle
Rbp_vtx [mm]	29	29	29	29	29
Rbp_lumical [mm]	240	240	240	240	240
z_lumical [mm]	2450	2450	2450	2450	2450
Accept.angle [rad]	0.1137	0.1477	0.1308	0.1137	0.1137
Accept angle [deg]	6.51	8.46	7.49	6.51	6.51
Radial cone thickness [mm]	4	14	9	14	g
Real cone thickness	3.974	13.848	8.923	13.910	8.942
z outer straight section [mm]	254.0	194.9	220.4	254.0	254.0
z edge	289.0	289.0	288.9	376.6	332.8
z at Rbp_lumical [mm]	2101.7	1613.1	1824.4	2101.7	2101.7

LumiCal acceptance

Results vs momentum

- For low pT: multiple scattering is important

 larger radius preferred for lower m.b.
- For high pT: track more straight → it is important to have a layer closer to the VXD

18

Single point resolution

Flavor tagging: impact on physics performance

- e⁺e⁻ → Hvv: dominating Higgs production process at √s=3 TeV
- σ × BR measurement for the decays to bb and cc
- flavor tagging crucial for achievable precision

channel		change for +/-20% fake r.
H → bb	0.23%	0.24% / 0.21%
Н→сс	3.1%	3.6% / 2.6%

- consider ±20% change in fake rates
- sizeable effect, in particular for H→cc:
 30% more integ. luminosity required for same precision when increasing fake rate by 20% (>1 year of additional running!)

LCD-Note-2011-036, CLICdp Note-2014-002