# Development of CMOS Pixel Sensors for Tracking Devices at the ILC

M. Winter (PICSEL team of IPHC-Strasbourg)

LCWS 2015, Whistler (CA), 3rd Novembre 2015

# Contents

- Present context of CMOS Pixel Sensors development at IPHC
- Final results of the prototyping for the ALICE-ITS
- Discussion on the perspectives for an ILC tracker
- Summary Outlook

## **Context of CPS Development**

#### Main current R&D activity of PICSEL team :

- R&D of CPS in a 0.18  $\mu$ m guadruple-well CMOS process
- targetted applications : vertex detectors AND trackers
- driving R&D framework : ALICE-ITS upgrade followed by CBM-MVD
- 3 chips under development in 0.18  $\mu$ m CIS process :
  - MISTRAL: rolling shutter similar (but faster) to ULTIMATE/STAR-PXL (0.35  $\mu$ m twin-well process)
  - ASTRAL: same as MISTRAL but with in-pixel discrimination (twice faster & less power consuming)
  - ALPIDE (ITS baseline): asynchronous r.o. (HPS like), 5 X faster & 2 X less power than ASTRAL (tbc)

#### Follow-up of STAR-PXL data taking :

- 2 years of successful physics run with ULTIMATE (still 1 one year more) : → vertexing with 400 sensors (360·10<sup>6</sup> pixels covering 0.15 m<sup>2</sup>)

   rolling shutter archi. & added value of CPS for physics assessed & validated

#### Next step : use CPS for trackers

- $_{\circ}$  larger sensitive areas  $\Rightarrow$  enhanced need of sensor response Uniformity, Power saving, Robustness
- $\circ$  larger distance to IP  $\Rightarrow$  alleviated requirements on :

Occupancy handling (read-out Speed), Radiation tolerance, Spatial resolution, Material budget



### **ITS Pixel Sensor : Two Architectures**



**Power consumption Insensitive area** 

< 50mW/cm $^2$  $\sim$  1mm x 30mm **Power consumption Insensitive area** 

 $\lesssim$  90mW/cm $^2$ 1.5mm x 30mm

Both chips have identical dim. (15mm x 30 mm) as well as physical and electrical interfaces:

position of interface pads \*

\* electrical signaling

\* steering, read-out, ... protocoles

## Progress made since April 2015 (ALCW – KEK/Tokyo)

- Performance assessment of large pixels suited to trackers
- Sensor design :
  - exploiting relaxed spatial resolution and radiation tolerance requirements of outer layers
  - focusing on enhanced power saving and robustness requirements

#### • 2 chips extensively tested on beam :

- MIMOSA-22  $\equiv$  small prototype (64 x 64 pixels) featuring **large** pixels
- SBB ≡ full scale building block of final sensor
   composed of 416x416 small pixels (already extensively tested)
   featuring the complete signal sensing & processing (sparsification) circuitry

#### • Layout of complete sensor adapted to trackers finalised :

- made of 4 FSBB operated in parallel
- $_{\circ}$  each FSBB composed of 208x208 large (36x65  $\mu {
  m m}^2$ ) pixels

#### Main Features of the Sensors Studied on Beam

- Full scale sensor building block :
  - $_{*}\,$  complete (fast) read-out chain  $\simeq$  ULTIMATE
  - $_{*}\,$  pixel area ( $\sim$  1 cm $^{2}$ )  $\simeq$  area of final building block
  - \* same nb of pixels (160,000) than complete final tracker chip
  - $_{*}\,$  fabricated with 18  $\mu$ m thick high-resistivity EPI
  - $_{\ast}~$  BUT : pixels are small (22 x 32.5  $\mu m^2$ ) and sparsification circuitry is oversized (power !)
  - \* Tested at DESY (few GeV e<sup>-</sup>) in June'15 and CERN-SPS (120 GeV "pions") in Oct. '15
- Large-pixel prototype without sparsification :
  - $*\,$  2 slightly different large pixels :  $\circ\,$   $\,$  36.0  $\mu m$  x 62.5  $\mu m$   $\,$   $\,$   $\,$   $\,$   $\,$   $\,$  39.0  $\mu m$  x 50.8  $\mu m$
  - \* pads over pixels (3 ML used for in-pixel circuitry)
  - $_{*}$  fabricated with 18  $\mu$ m thick high-resistivity EPI
  - $_{*}~$  BUT : only  $\lesssim$  10 mm $^{2}$ , 4,000 pixels, no sparsification
  - $\ast$  Tested in Frascati (450 MeV e<sup>-</sup>) in March & May'15







# Main Objectives of MIMOSA-22THRb and FSBB-M0 Prototyping

| Parametres investigated                          | MIMOSA-22THRb7/6 | FSBB-M0bis |
|--------------------------------------------------|------------------|------------|
| Sensing node geometry                            | Х                | Х          |
| Epitaxial layer parametres                       | Х                | Х          |
| In-pixel signal processing                       | Х                | X          |
| on 3 ML (Pre-Amp, clamping)                      | Х                | —          |
| Pads over pixels                                 | Х                | _          |
| Large pixel detection efficiency                 | Х                | _          |
| at 30 $^\circ$ C (incl. after OB radiation load) | Х                | —          |
| Large pixel single point resolution              | Х                | _          |
| Complete signal sensing & processing chain       | _                | Х          |
| Fake rate (160,000 pixels)                       | X                | Х          |
| Impact of voltage drop                           | _                | Х          |
| Cluster encoding data size                       | X                | x          |

### **FSBB Tests at the CERN-SPS in Octobre 2015**

• Beam Telescope made of 3 pairs of FSBB Planes on T4/H6 (120 GeV  $\pi^-$ )



- Measurements performed as a function of discriminator threshold :
  - detection efficiency vs fake rate (noisy pixels)
  - $_{\circ}~$  spatial resolution associated to binary encoding of 22 x 32.5  $\mu m^2$  pixels
  - $_{\circ}$  radiation tolerance at 30 $^{\circ}$ C coolant temperature (doses  $\gg$  ILC values)

### Main FSBB-M0 Detection Performances (1/3)

- Detection performances vs discri. threshold :
  - \* detection efficiency wrt tracks reconstructed in BT
  - \* fake rate (pixel noise fluctuations above threshold)
  - \* single point resolution wrt impact extrapolated from BT

(2 directions : // column or // raw)

- \* average nb of encoding windows per hit(for the purpose of data size minimisation)
- 2 cases shown on figures :
  - \* response of 1 of both DUT (top fig.)
  - response of all 6 ("identical") sensors
     composing the BT (bottom fig.)
    - $\hookrightarrow$  indication of uniformity over large detector areas





#### Main FSBB-M0 Detection Performances (2/3)

- Study of detection efficiency stability :
  - \* Difference between SPS (120 GeV pions) & DESY (4.5 GeV electrons)
  - $_{*}\,$  Effect of occupancy : from  $\sim$  1 hit/frame to  $\sim$  25 hits/frame



 $\Rightarrow$  No variation observed

#### Main FSBB-M0 Detection Performances (3/3)

• Study of radiation tolerance at T  $\gtrsim$  30 $^{\circ}$ C : loads relevant for the ALICE-ITS inner layers



 $\Rightarrow$  Tolerance to O(100–1000) times ILC dose in L0

#### MIMOSA-22 Tests at Frascati in May 2015

• Beam Telescope made of MIMOSA-28 & -18 Planes at LNF (0.45 GeV  $e^-$ )



#### • Measurements performed as a function of discriminator threshold :

- detection efficiency vs fake rate (noisy pixels)
- $_{\circ}~$  spatial resolution associated to binary encoding of 36 x 62.5  $\mu m^2$  and 39 x 50.8  $\mu m^2$  pixels
- radiation tolerance at 30°C coolant temperature (doses  $\gg$  ILC values)

# Main MIMOSA-22THRb Detection Performances (1/2)

| Pixel type                   | Pixel dim.                | Diode/Footprint | Pre-Amp T. | Clamping capa.        | Integ. time |
|------------------------------|---------------------------|-----------------|------------|-----------------------|-------------|
| MIMOSA-22THR <mark>b7</mark> | 39 $\mu m$ x 50.8 $\mu m$ | 5/16 $\mu m^2$  | N-MOS      | MOS (N-well)          | 5 $\mu s$   |
| MIMOSA-22THR <mark>b6</mark> | 36 $\mu m$ x 62.5 $\mu m$ | 7/16 $\mu m^2$  | P-MOS      | fringe (metal layers) | 5 $\mu s$   |



#### P-MOS vs N-MOS Pre-Amp input transistor :

- \* P-MOS: less RTS noise, higher gain and sensing node voltage
- \* N-MOS: better pixel response uniformity, less temperature dependence, maturity (STAR)

#### Main MIMOSA-22THRb Detection Performances (2/2)

• Study of radiation tolerance at T  $\gtrsim$  30 $^\circ$ C : loads relevant for the ALICE-ITS outer layers



 $\Rightarrow$  Tolerance to O(100–1000) times ILC dose in main tracker

# **Final Sensor : MISTRAL-O**

- Combination of 4 FSBBs with MIMOSA-22THRb7 pixels
- Main characteristics :
  - \* chip dimensions : 15 mm x 30 mm
  - \* Sensitive area = 13.50 mm x 29.95 mm
    - $\hookrightarrow$  1.5 mm wide side band (evolving towards  $\sim$  1 mm)
  - \* 832 columns of 208 pixels (1.6 10<sup>5</sup> pixels)
  - $_{*}\,$  pixel dimensions : 36  $\mu m$  x 65  $\mu m$
  - \* in-pixel pre-amp & clamping (fringe capa)
  - \* end-of-column signal discrimination
  - \* discriminators' output sparsification
  - # fully programmable control circuitry
  - \* pads over pixel array



- **Typical performances :** (based on FSBB and MIMOSA-22THRb7 beam tests)
  - $_{*}\,$  read-out time  $\sim$  20  $\mu s$   $_{*}\,$  spatial resolution  $\sim$  10  $\mu m$   $_{*}\,$  power density  $\lesssim$  90 mW/cm $^{2}\,$
  - $_{*}~$  radiation tolerance > 1.5 $\cdot$ 10 $^{12}$ n $_{eq}$ /cm $^{2}$  and 150 kRad at T > 30 $^{\circ}$ C

#### **Extrapolation to an ILC Vertex Detectors**

- VERTEX DETECTOR CONCEPT :
  - \* Cylindrical geometry based on 3 concentric 2-sided layers
  - \* Layers equipped with 3-4 different CMOS Pixel Sensors (CPS)



• CPS FOR DOUBLE-SIDED VXD LADDERS ACHIEVABLE WITH PRESENT KNOWLEDGE :

- \* L0 pixels: 17x17  $\mu m^2 \Rightarrow < 3 \ \mu m$  & 64–32  $\mu s$  \* L1 pixels: 17x102  $\mu m^2 \Rightarrow \leq 5 \ \mu m$  & 5–2/1  $\mu s$ \* L3–L6 pixels: 25x51  $\mu m^2 \Rightarrow \sim 3.5 \ \mu m$  & 40  $\mu s$  combined with 27x29  $\mu m^2 \Rightarrow \leq 5 \ \mu m$  & 4  $\mu s$
- NEXT STEPS OF THE R&D :
  - \* realise & operate double-sided ladders with 2 different CPS and check power cycling
  - \* continue exploiting CPS potential :

 $\Rightarrow$  squeeze read-out time & power while keeping high spatial resolution (e.g. < 3  $\mu m$ )

## **Extrapolation to ILC Trackers**

- ALICE-ITS CONCEPT :
  - \* Cylindrical geometry based on 7 concentric single-sided layers
  - \* Outer Barrel (4 layers; 10 m<sup>2</sup>) serves as a tracker
  - \* All layers equipped with CMOS Pixel Sensors (CPS)
  - \* Baseline sensor (ALPIDE) : 5  $\mu m$  & 4  $\mu s$ (not yet validated on detector ladder)
  - $_{*}$  Outer Barrel material budget  $\lesssim$  1% X $_{0}$ /layer
  - $_{*}\,$  Stave length up to  $\sim$  1.5 m
- CPS FOR DOUBLE-SIDED TRACKER LAYERS ACHIEVABLE WITH PRESENT KNOWLEDGE :
  - \* transposing the ITS concept to an ILC exp. allows for 5  $\mu m$  resolution and 4  $\mu s$  read-out time
  - \* alternative : use ITS sensor (5  $\mu m$  & 4  $\mu s$ ) on one ladder side and a faster (time stamping) version based on elongated pixels on the other side :  $\sim$  1  $\mu s$  seems achievable (tbc)





# **SUMMARY & OUTLOOK**

- Validation of CPS for high resolution vertex detectors carries on through STAR-PXL data taking campaigns : results of 2 years of physics runs confirm high resolution DCA
- Development of CPS for a tracker (ALICE-ITS upgrade) finalised
  - $\hookrightarrow$  uses powerful CMOS process & well suited epitaxial layers ( $\gtrsim$  20  $\mu m$  thick;  $\sim$  1–8 k $\Omega\cdot$ cm)
- Large pixels developed for trackers are proven to have good detection efficiency

   they may be suited to pixelated trackers at ILC
- CMOS process used for ALICE-ITS upgrade allows deriving fast r.o. ( $\sim$  1  $\mu s$ ) concept for inner layer of an ILC vertex detector  $\rightarrow$  Goal : few-bunch (1-2) tagging while keeping  $\sigma_{sp} \sim$  3  $\mu m$
- Next steps :
  - start deriving CPS for VXD in 2016/17 via CBM-MVD
  - realise a double-sided ladder prototype based on
     2 different sensors (1 precise, 1 fast)
     to investigate the time-stamping concept

| Layer       | $\sigma_{sp}$        | $t_{int}$      |  |
|-------------|----------------------|----------------|--|
| ILD-VXD/In  | $<$ 3/4 $\mu m$      | 30-40/1 µs     |  |
| ILD-VXD/Out | $\sim$ 3.5/4 $\mu m$ | 80/120 $\mu s$ |  |

#### **FSBB Cluster Multiplicity**

#### Comparing DESY vs CERN results for one of the planes (Plane 3)



#### **Comments on ILD Vertex Detector Requirements**

• Expected N(hits)/cm<sup>2</sup>/BX at 500 GeV & 1 TeV with anti-DID, for each ILD-VXD layer (DBD) :

| Layer   | 1        | 2       | 3         | 4         | 5         | 6         |
|---------|----------|---------|-----------|-----------|-----------|-----------|
| 0.5 TeV | 6.3±1.8  | 4.0±1.2 | 0.25±0.11 | 0.21±0.09 | 0.05±0.03 | 0.04±0.03 |
| 1 TeV   | 11.8±1.0 | 7.5±0.7 | 0.43±0.13 | 0.36±0.11 | 0.09±0.04 | 0.08±0.04 |

- Occupancy in L1 and L2 :
  - \* L1 : 17  $\mu m \times$  17  $\mu m$  pixels (cluster mult.  $\simeq$  5) Pixel occ. at 500 GeV  $\simeq$  10<sup>-4</sup>/BX  $\Rightarrow$  10<sup>-2</sup>/50  $\mu s$
  - \* L2 : 17  $\mu m \times 102 \ \mu m$  pixels (cluster mult.  $\simeq$  3) Pixel occ. at 500 GeV  $\simeq 2 \times 10^{-4}$ /BX  $\Rightarrow 10^{-3}$ /2.5  $\mu s$
  - \* 1 TeV : twice higher occupancy
  - \* Luminosity upgrade : 4 times higher occupancy
  - \* Large uncertainties (MC stat., anti-DID uncertainty, etc.)
- $\Rightarrow$  Safety margins required on param. governing occupancy

