$\tilde{\tau}$ co-annihilation models at LHC and ILC

M. Berggren, J. List, I. Melzer-Pellmann, A. Cakir, B. Samani, C. Seitz, D. Krücker, S. Wayand

¹DESY, Hamburg

LCWS, Whistler, BC, 2-6 November 2015

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- The STCx benchmark @ LHC
- The STCx benchmark @ ILC 3 STCx @ 500 GeV STCx @ 500 GeV: Globaly STCx @ 500 GeV: ẽ, μ, τ₁
 - Conclusions

For all the details, see arXiv:1508.04383 (submitted to EPJC)

4 A N

Remember, apart from stabilising the Higgs mass (naturalness) SUSY can address:

- Anomaly in g 2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of \sim 100 GeV would be required. And a process not to over-produce it, eg. by co-anhibition by a nearby NLSP.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \rightarrow s\gamma$, $b \rightarrow \mu\mu$, ρ -parameter, $\Gamma(Z)$...

Can we still get all this with SUSY, without contradicting LHC limits ?!

Remember, apart from stabilising the Higgs mass (naturalness) SUSY can address:

- Anomaly in g 2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of \sim 100 GeV would be required. And a process not to over-produce it, eg. by co-anhiliation by a nearby NLSP.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \rightarrow s\gamma$, $b \rightarrow \mu\mu$, ρ -parameter, $\Gamma(Z)$...

Can we still get all this with SUSY, without contradicting LHC limits ?!

Remember, apart from stabilising the Higgs mass (naturalness) SUSY can address:

- Anomaly in g 2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of \sim 100 GeV would be required. And a process not to over-produce it, eg. by co-anhiliation by a nearby NLSP.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \rightarrow s\gamma$, $b \rightarrow \mu\mu$, ρ -parameter, $\Gamma(Z)$...

Can we still get all this with SUSY, without contradicting LHC limits ?!

Remember, apart from stabilising the Higgs mass (naturalness) SUSY can address:

- Anomaly in g 2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of \sim 100 GeV would be required. And a process not to over-produce it, eg. by co-anhiliation by a nearby NLSP.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s\gamma$, $b \to \mu\mu$, ρ -parameter, $\Gamma(Z)$...

Can we still get all this with SUSY, without contradicting LHC limits ?!

-= 1= +) 4 (P

Remember, apart from stabilising the Higgs mass (naturalness) SUSY can address:

- Anomaly in g 2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of \sim 100 GeV would be required. And a process not to over-produce it, eg. by co-anhiliation by a nearby NLSP.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \rightarrow s\gamma$, $b \rightarrow \mu\mu$, ρ -parameter, $\Gamma(Z)$...

Can we still get all this with SUSY, without contradicting LHC limits ?!

-= 1= *) Q (A

Remember, apart from stabilising the Higgs mass (naturalness) SUSY can address:

- Anomaly in g 2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of \sim 100 GeV would be required. And a process not to over-produce it, eg. by co-anhiliation by a nearby NLSP.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \rightarrow s\gamma$, $b \rightarrow \mu\mu$, ρ -parameter, $\Gamma(Z)$...

Can we still get all this with SUSY, without contradicting LHC limits ?!

Mikael Berggren (DESY)

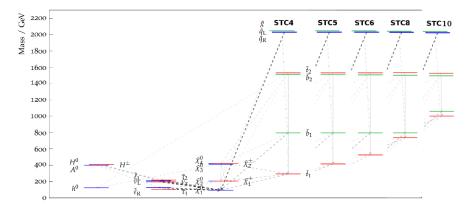
Example: The STCx models

STC4-10

- 11 parameters.
- Separate gluino
- Higgs, un-coloured, and coloured scalar parameters separate

Parameters chosen to deliver all constraints (LHC, LEP, cosmology, low energy). In particular, the $\tilde{\tau}_1$ is the NLSP, with a mass-difference to the LSP \sim 10 GeV \Rightarrow Co-anhilitaion.

- At E_{CMS} = 500 GeV:
 - All sleptons available.
 - No squarks.
 - Lighter bosinos, up to $\tilde{\chi}^0_3$ (in $e^+e^-
 ightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_3$)


(See H. Baer, J. List, arXiv:1307:0782.)

イロト 不得 トイヨト イヨト 正言 ろくの

Introduction

Full STCx mass-spectrum

High mass squarks+gluino

Well-tempered higgs, bosino and slepton sector

Varying 3-gen squarks

Mikael Berggren (DESY)

 $\tilde{\tau}$ co-annihilation

LCWS, November 2015 5 / 24

- STC8 and STC10 studied by I. Melzer-Pellmann's group at DESY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:

• $\tilde{\chi}_k^0 \tilde{\chi}_l^{\pm} > \tilde{\chi}_k^{\pm} \tilde{\chi}_l^{\pm} > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}t > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_k^0 \tilde{\chi}_l^0 > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{\tau}}$ and $M_{\tilde{\tau}}$ is 200 GeV higher in STC10

ightarrow Cross-sections for ${
m \widetilde{t}}$ and ${
m \widetilde{b}}{
m \widetilde{b}}$ 5 imes smaller in STC10 wrt STC8.

• For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).

• For $\tilde{\chi}^{\pm}$ the rest is other leptons.

- The *τ*:s mostly come from *τ*₁ → *τχ*₀⁰, where the mass difference is only 10 GeV⇒ little missing energy.
- \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^{\pm}$ (20%)
- \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ (~ 10%).
- The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Melzer-Pellmann's group at DESY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:

• $\tilde{\chi}_k^0 \tilde{\chi}_l^\pm > \tilde{\chi}_k^\pm \tilde{\chi}_l^\pm > \tilde{\tau} \tilde{\tau} > \tilde{\ell} \tilde{\ell} > \tilde{t} \tilde{t} > \tilde{b} \tilde{b} > \tilde{q} \tilde{q} > \tilde{\chi}_k^0 \tilde{\chi}_l^0 > \tilde{g} \tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{f}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10

 \rightarrow Cross-sections for $\tilde{t}\tilde{t}$ and $\tilde{b}\tilde{b}$ 5 \times smaller in STC10 wrt STC8.

For x̃⁰, the rest is either only bosons, or "nothing" (ie. neutrinos)
 For x̄[±] the rest is other leptons

- The *τ*:s mostly come from *τ˜*₁ → *τ χ˜*₀⁰, where the mass difference is only 10 GeV⇒ little missing energy.
- \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^{\pm}$ (20%)
- \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ (~ 10%).
- The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Melzer-Pellmann's group at DESY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:

• $\tilde{\chi}_k^0 \tilde{\chi}_l^\pm > \tilde{\chi}_k^\pm \tilde{\chi}_l^\pm > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}t > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_k^0 \tilde{\chi}_l^0 > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{f}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10

- - For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).
 - For $\tilde{\chi}^{\pm}$ the rest is other leptons.
- The τ :s mostly come from $\tilde{\tau}_1 \rightarrow \tau \tilde{\chi}_0^0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
- \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^{\pm}$ (20%)
- \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ (~ 10%).
- The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Melzer-Pellmann's group at DESY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:

• $\tilde{\chi}_k^0 \tilde{\chi}_l^\pm > \tilde{\chi}_k^\pm \tilde{\chi}_l^\pm > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}t > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_k^0 \tilde{\chi}_l^0 > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{f}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10

- - For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).
 - For $\tilde{\chi}^{\pm}$ the rest is other leptons.
- The τ :s mostly come from $\tilde{\tau}_1 \rightarrow \tau \tilde{\chi}_0^0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
- \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^{\pm}$ (20%)
- \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ (~ 10%).
- The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Melzer-Pellmann's group at DESY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:

• $\tilde{\chi}_k^0 \tilde{\chi}_l^\pm > \tilde{\chi}_k^\pm \tilde{\chi}_l^\pm > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}t > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_k^0 \tilde{\chi}_l^0 > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{f}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10

- - For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).
 - For $\tilde{\chi}^{\pm}$ the rest is other leptons.
- The τ :s mostly come from $\tilde{\tau}_1 \rightarrow \tau \tilde{\chi}_0^0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
- \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^{\pm}$ (20%)
- \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ (~ 10%).
- The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Melzer-Pellmann's group at DESY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:

• $\tilde{\chi}_k^0 \tilde{\chi}_l^\pm > \tilde{\chi}_k^\pm \tilde{\chi}_l^\pm > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}t > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_k^0 \tilde{\chi}_l^0 > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{f}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10

- - For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).
 - For $\tilde{\chi}^{\pm}$ the rest is other leptons.
- The τ :s mostly come from $\tilde{\tau}_1 \rightarrow \tau \tilde{\chi}_0^0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
- \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^{\pm}$ (20%)
- \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ (~ 10%).
- The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

 STC8 and STC10 studied by I. Melzer-Pellmann's group at DESY with fastsim (Delphes).

$\Rightarrow \text{LHC expectations}$

- Despite the high cross-section, the low amount of missing *E_T* and the long decay chains will make direct bosino and slepton observations hard.
- The simple decay-chains and very high missing *E_T* will make firstand second-generation squark production easy to detect.
 However, the cross-section is so low that it is still challenging.
- Third generation squark production constitute a good compromise between cross-section and visibility, and will be the most powerful discovery channel. The lower cross-section in STC10 is compensated by higher visibility.

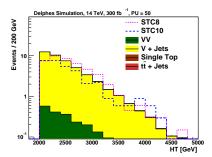
 The right-handed gen Land ∠ squarks almost always decay directly to quark+LSP

 STC8 and STC10 studied by I. Melzer-Pellmann's group at DESY with fastsim (Delphes).

\Rightarrow LHC expectations

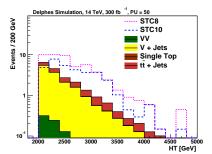
- Despite the high cross-section, the low amount of missing *E_T* and the long decay chains will make direct bosino and slepton observations hard.
- The simple decay-chains and very high missing *E_T* will make firstand second-generation squark production easy to detect.
 However, the cross-section is so low that it is still challenging.
- Third generation squark production constitute a good compromise between cross-section and visibility, and will be the most powerful discovery channel. The lower cross-section in STC10 is compensated by higher visibility.
 - Ine right-handed gen Land ∠ squarks almost always decay directly to quark 1 SP

Mikael Berggren (DESY)

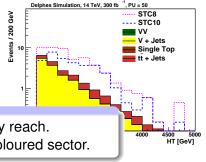

 STC8 and STC10 studied by I. Melzer-Pellmann's group at DESY with fastsim (Delphes).

$\Rightarrow \text{LHC expectations}$

- Despite the high cross-section, the low amount of missing *E_T* and the long decay chains will make direct bosino and slepton observations hard.
- The simple decay-chains and very high missing *E_T* will make firstand second-generation squark production easy to detect.
 However, the cross-section is so low that it is still challenging.
- Third generation squark production constitute a good compromise between cross-section and visibility, and will be the most powerful discovery channel. The lower cross-section in STC10 is compensated by higher visibility.
 - The right-handed gen1 and ∠ squarks almost always decay directly to quark±1 SP


- Select events with large amount of *E*_T in central, high *E* jets (HT) ⇒ hard interaction.
- Further select large missing E_T (MHT) ⇒ Partly invisible decay of heavy particle to a (much) lighter one.
- Avoid "signals" from bad measurements: Angle between any jet and the MHT direction large. Veto isolated leptons.
- HT distribution.
- Same, but enhance in b̃ and t̃ by demanding two b-tagged jets.

- Select events with large amount of *E*_T in central, high *E* jets (HT) ⇒ hard interaction.
- Further select large missing E_T (MHT) ⇒ Partly invisible decay of heavy particle to a (much) lighter one.
- Avoid "signals" from bad measurements: Angle between any jet and the MHT direction large. Veto isolated leptons.
- HT distribution.
- Same, but enhance in b̃ and t̃ by demanding two b-tagged jets.


(B)

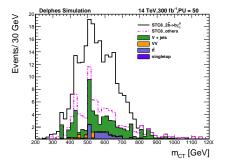
- Select events with large amount of *E*_T in central, high *E* jets (HT) ⇒ hard interaction.
- Further select large missing E_T (MHT) ⇒ Partly invisible decay of heavy particle to a (much) lighter one.
- Avoid "signals" from bad measurements: Angle between any jet and the MHT direction large. Veto isolated leptons.
- HT distribution.
- Same, but enhance in b̃ and t̃ by demanding two b-tagged jets.

3 + 4 = +

- Select events with large amount of *E*_T in central, high *E* jets (HT) ⇒ hard interaction.
- Further select large missing E_T (MHT) ⇒ Partly invisible decay of heavy particle to a (much) lighter one.

- Avoid "sig Good discovery reach. measurer any jet an large. Veto isolated leptons.
 Good discovery reach.
- HT distribution.
- Same, but enhance in b̃ and t̃ by demanding two b-tagged jets.

∃ ► < ∃ ►</p>


STCx @ LHC14: Search for $\tilde{b} \rightarrow b \tilde{\chi}_1^0$

- Select events with exactly two central, high E_T, b-tagged jets.
- No other jet with significant E_T allowed, veto leptons.
- Require high missing E_T and high transverse mass.
- The "contransverse mass" is an observable that is predicted to have an edge at $(M_{\tilde{b}}^2 - M_{\tilde{\chi}_0^0}^2)/M_{\tilde{b}} \approx M_{\tilde{b}}.$

イロト 不得 トイヨト イヨト 正言 ろくの

STCx @ LHC14: Search for $\tilde{b} \rightarrow b \tilde{\chi}_1^0$

- Select events with exactly two central, high E_T, b-tagged jets.
- No other jet with significant E_T allowed, veto leptons.
- Require high missing E_T and high transverse mass.
- The "contransverse mass" is an observable that is predicted to have an edge at $(M_{\tilde{b}}^2 - M_{\tilde{\chi}_0^0}^2)/M_{\tilde{b}} \approx M_{\tilde{b}}.$

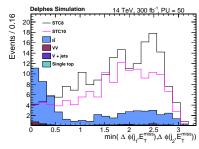
A B F A B F

STCx @ LHC14: Search for $\tilde{b} \rightarrow b \tilde{\chi}_1^0$

- Select events with exactly two central, high E_T, b-tagged jets.
- No other jet with significant E_T allowed, veto leptons.
- Require high missing E_{τ} and $* \downarrow$ high tr Good discovery reach, up to $M_{\tilde{b}} \sim 1$ TeV.
- The "c Limits on $M_{\tilde{b}}$ (or measurement if $M_{\tilde{\chi}_0^0}$ known). to have an edge at $(M_{\tilde{b}}^2 - M_{\tilde{\chi}_0^0}^2)/M_{\tilde{b}} \approx M_{\tilde{b}}$.

Delphes Simulation

Events/ 30 GeV


・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ト

STCx @ LHC14: Search for \tilde{t} in single-lepton channel

- Low BR $\tilde{t} \to t \tilde{\chi}_1^0$ in the model. \Rightarrow Look for $\tilde{t} \to t \tilde{\chi}_{2,3,4}^0$, with bosinos going to $W \to \ell \nu$ on one side, to $W \to qq'$ on the other.
- One (and only one) isolated lepton centraly + "Nothing"
- Many central jets (≥ 5), with one or two b-tagged.
- Transverse mass m_T of missing momentum and lepton > 260 GeV.
- Select events where the angle between leading jets and missing momentum is large

STCx @ LHC14: Search for \tilde{t} in single-lepton channel

- Low BR $\tilde{t} \to t \tilde{\chi}_1^0$ in the model. \Rightarrow Look for $\tilde{t} \to t \tilde{\chi}_{2,3,4}^0$, with bosinos going to $W \to \ell \nu$ on one side, to $W \to qq'$ on the other.
- One (and only one) isolated lepton centraly + "Nothing"
- Many central jets (≥ 5), with one or two b-tagged.
- Transverse mass m_T of missing momentum and lepton > 260 GeV.
- Select events where the angle between leading jets and missing momentum is large

STCx @ LHC14: Search for \tilde{t} in single-lepton channel

Events / 0.16

- Low BR $\tilde{t} \to t \tilde{\chi}_1^0$ in the model. \Rightarrow Look for $\tilde{t} \to t \tilde{\chi}_{2,3,4}^0$, with bosinos going to $W \to \ell \nu$ on one side, to $W \to qq'$ on the other.
- One (and only one) isolated lepton
 centra
 The discovery channel, will be discovered or
 Many
 excluded by the end of 2016.
 - two b- Alas, purity is low (20-40 %), so hard to make
- Trans\ further model determination. momentum and lepton > 260 GeV.
- Select events where the angle between leading jets and missing momentum is large

14 TeV, 300 fb⁻¹, PU =

 $\begin{array}{ccc} 2 & 2.5 & 3 \\ \phi(j_{\tau}, E_{\tau}^{miss}), \Delta & \phi(j_{\tau}, E_{\tau}^{miss}) \end{array}$

- Dominating SUSY channel at LHC is $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ production: > 1 pb.
- ⇒ search for direct *un-colored* bosino prodution ("whiteinos") !
- Golden channel: \geq three leptons.
- Plethora of channels, and of backgrounds (WZ, tt, Drell-Yan)
- ⇒ 45 different searches binned in
 m_{ℓℓ}, m_T, and E^{miss}₁
- No single bin highly significant, but together, $> 5\sigma @ < 200 \text{ fb}^{-1}$.
- Signal is a mainly $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$, followed by $\tilde{\chi}_2^{\pm} \chi_x$.

Ch	Total SM ± unc.	STC8	Z	\$ ⁰ \$*	$\tilde{\chi}_{2}^{\pm}\chi_{x}$	Other EWK	No EWK			
m	m _{e+e-} < 75GeV									
1	10900 ± 3300	88	< 0.5	76	7	3	2			
2	5900 ± 960	130	< 0.5	110	10	10	0			
3	1390 ± 340	140	<0.5	110	20	10	10			
4	1290 ± 210	26	<0.5	16	7	2	2			
5	348 ± 121	19	<0.5	10	6	2	1			
6	45.1 ± 32.4	8.5	<0.5	2.3	4.5	0.5	1.2			
7	469 ± 125	26	< 0.5	9	12	4	2			
8	29.6 ± 6.8	9.6	0.9	2.5	5.7	0.6	0.8			
9	1.26 ± 0.41	1.0	<0.5	0.2	0.6	0.0	0.3			
10	21.4 ± 3.2	6.6	1.0	1.2	4.6	0.6	0.1			
11	4.48 ± 1.72	2.7	0.6	0.5	1.9	0.3	0.0			
12	0.0262 ± 0.0095	0.3	<0.5	0.0	0.15	0.15	0.0			
13	1.06 ± 0.19	1.1	0.6	0.0	0.4	0.6	0.0			
14	0.89 ± 0.263	0.3	<0.5	0.0	0.3	0.0	0.0			
15	0.0137 ± 0.0048	0	< 0.5	0	0	0	0			
	$eV < m_{\ell^+\ell^-} < 1050$									
1	111000 ± 16000 45900 ± 7700	97 170	< 0.5	79 140	11 20	5 10	3 10			
3	45900 ± 7700 7490 ± 1390	210	<0.5	140	20 50	10	10			
4	4640 ± 490	210	<0.5		10	2	1			
5	4640 ± 490 994 ± 278	31	<0.5	12 13	13	4	1			
6	994 ± 278 55.4 + 40.3	16	<0.5	2	10	2	2			
7	55.4 ± 40.3 444 ± 75	30	<0.5	9	17	2	1			
8	26.2 ± 5.0	26	2.9	6	16	4	2			
9	1.91 ± 0.47	2.0	1.0	0.2	1.5	0.0	0.4			
10	16.4 ± 1.4	6.7	1.4	0.9	4.7	0.8	0.4			
11	5.01 ± 0.93	3.0	1.0	0.6	1.6	0.0	0.8			
12	0.058 ± 0.0176	0.12	<0.5	0.0	0.0	0.0	0.12			
13	1.77 ± 0.2	0.15	<0.5	0.0	0.15	0.0	0.0			
14	2.32 ± 0.35	0.31	< 0.5	0.0	0.31	0.0	0.0			
15	0.113 ± 0.034	0	< 0.5	0	0	0	0			
m et	4- > 105GeV									
1	2380 ± 320	22	< 0.5	11	7	3	1			
2	1720 ± 240	34	< 0.5	18	10	4	2			
3	614 ± 157	61	<0.5	21	24	10	6			
4	217 ± 47	10	<0.5	3	6	1	1			
5	57.6 ± 11.5	11	0.7	2	6	3	1			
6	13.7 ± 3.5	8.0	1.2	1.4	3.9	1.8	0.8			
7	70.2 ± 6.0	15	1.4	1	13	2	0			
8	12.6 ± 2.7	15	2.6	2	10	2	1			
9	0.812 ± 0.174	1.4	1.0	0.2	0.7	0.2	0.4			
10	11.7 ± 1.4	3.5	0.8	0.2	2.3	1.1	0.0			
11	1.94 ± 0.41	2.8	1.4	0.3	1.5	0.3	0.7			
12	0.0391 ± 0.0114	0	< 0.5	0	0	0	0			
13	1.36 ± 0.14	0	< 0.5	0	0	0	0			
14	0.674 ± 0.176	0.78	< 0.5	0.0	0.15	0.15	0.47			
15	0.0137 ± 0.0055	0.24	< 0.5	0.0	0.0	0.0	0.24			

레이 시민이 시민이 크네.

- Dominating SUSY channel at LHC is $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ production: > 1 pb.
- ⇒ search for direct *un-colored* bosino prodution ("whiteinos") !
- Golden channel: \geq three leptons.
- Plethora of channels, and of backgrounds (WZ, tt
 , Drell-Yan)
- ullet \Rightarrow 45 different searches binned in
 - $m_{\ell\ell}, m_T$, and E_T^{miss}
- No single bin highly significant, but together, $> 5\sigma @ < 200 \text{ fb}^{-1}$.
- Signal is a mainly $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$, followed by $\tilde{\chi}_2^{\pm} \chi_x$.

Ch	Total SM ± unc.	STC8	Z	$\hat{\chi}_{2}^{0}\hat{\chi}_{1}^{\pm}$	$\tilde{\chi}_{2}^{\pm}\chi_{x}$	Other EWK	No EWK	
m et	_e < 75GeV							
1	10900 ± 3300	88	< 0.5	76	7	3	2	
2	5900 ± 960	130	<0.5	110	10	10	0	
3	1390 ± 340	140	< 0.5	110	20	10	10	
4	1290 ± 210	26	< 0.5	16	7	2	2	
5	348 ± 121	19	< 0.5	10	6	2	1	
6	45.1 ± 32.4	8.5	<0.5	2.3	4.5	0.5	1.2	
7	469 ± 125	26	<0.5	9	12	4	2 0.8	
8	29.6 ± 6.8	9.6	0.9	2.5	5.7	0.6		
9	1.26 ± 0.41	1.0	<0.5	0.2	0.6	0.0	0.3	
10	21.4 ± 3.2	6.6	1.0	1.2	4.6	0.6	0.1	
11	4.48 ± 1.72	2.7	0.6	0.5	1.9	0.3	0.0	
12	0.0262 ± 0.0095	0.3	<0.5	0.0	0.15	0.15	0.0	
13	1.06 ± 0.19	1.1	0.6	0.0	0.4	0.6	0.0	
14	0.89 ± 0.263	0.3	<0.5	0.0	0.3	0.0	0.0	
15	0.0137 ± 0.0048	0	<0.5	0	0	0	0	
	$eV < m_{\ell^+\ell^-} < 1050$							
1	111000 ± 16000	97	<0.5	79	11	5	3	
2	45900 ± 7700	170	< 0.5	140	20	10	10	
3	7490 ± 1390	210	< 0.5	140	50	10	10	
4	4640 ± 490	26	< 0.5	12	10	2	1	
5	994 ± 278	31	< 0.5	13	13	4	1	
6	55.4 ± 40.3	16	< 0.5	2	10	2	2 1 2	
7	444 ± 75	30	< 0.5	9	17	2		
8 9	26.2 ± 5.0 1.91 ± 0.47	26 2.0	2.9	6 0.2	16 1.5	4	2	
10	1.91 ± 0.47 16.4 ± 1.4	6.7	1.4	0.2	4.7	0.0	0.4	
11	16.4 ± 1.4 5.01 ± 0.93	3.0	1.4	0.9	4.7	0.8	0.4	
12	0.058 ± 0.0176	0.12	< 0.5	0.6	0.0	0.0	0.8	
12	0.058 ± 0.0176 1.77 ± 0.2	0.12	<0.5	0.0	0.15	0.0	0.12	
14	2.32 ± 0.35	0.15	<0.5	0.0	0.31	0.0	0.0	
15	0.113 ± 0.034	0.31	<0.5	0.0	0.31	0.0	0.0	
 	0.113 ± 0.034	0	<0.5	0	0	0	0	
1	2380 ± 320	22	< 0.5	11	7	3	1	
2	1720 ± 240	34	<0.5	18	10	4	2	
3	614 ± 157	61	<0.5	21	24	10	6	
4	217 ± 47	10	<0.5	3	6	1	ī	
5	57.6 ± 11.5	11	0.7	2	6	3	1	
6	13.7 ± 3.5	8.0	1.2	1.4	3.9	1.8	0.8	
7	70.2 ± 6.0	15	1.4	1	13	2	0	
8	12.6 ± 2.7	15	2.6	2	10	2	1	
9	0.812 ± 0.174	1.4	1.0	0.2	0.7	0.2	0.4	
10	11.7 ± 1.4	3.5	0.8	0.2	2.3	1.1	0.0	
11	1.94 ± 0.41	2.8	1.4	0.3	1.5	0.3	0.7	
12	0.0391 ± 0.0114	0	<0.5	0	0	0	0	
13	1.36 ± 0.14	0	< 0.5	0	0	0	0	
14	0.674 ± 0.176	0.78	<0.5	0.0	0.15	0.15	0.47	
15	0.0137 ± 0.0055	0.24	< 0.5	0.0	0.0	0.0	0.24	

- Dominating SUSY channel at LHC is $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ production: > 1 pb.
- ⇒ search for direct *un-colored* bosino prodution ("whiteinos") !
- Golden channel: \geq three leptons.
- Plethora of channels, and of backgrounds (WZ, tt, Drell-Yan)
- \Rightarrow 45 different searches binned in
 - $m_{\ell\ell}, m_T$, and E_T^{miss}
- No single bin highly significant, but together, > 5σ @ < 200 fb⁻¹.
- Signal is a mainly $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$, followed by $\tilde{\chi}_2^{\pm} \chi_x$.

Ch	Total SM ± unc.	STC8	Z	\$°\$?	$\tilde{\chi}_{2}^{\pm}\chi_{x}$	Other EWK	No EWK	
m	- < 75GeV				121-			
1	10900 ± 3300	88	< 0.5	76	7	3	2	
2	5900 ± 960	130	<0.5	110	10	10	0	
3	1390 ± 340	140	< 0.5	110	20	10	10	
4	1290 ± 210	26	<0.5	16	7	2	2	
5	348 ± 121	19	<0.5	10	6	2	1	
6	45.1 ± 32.4	8.5	<0.5	2.3	4.5	0.5	1.2	
7	469 ± 125	26	<0.5	9	12	4	2	
8	29.6 ± 6.8	9.6	0.9	2.5	5.7	0.6	0.8	
9	1.26 ± 0.41	1.0	< 0.5	0.2	0.6	0.0	0.3	
10	21.4 ± 3.2	6.6	1.0	1.2	4.6	0.6	0.1	
11	4.48 ± 1.72	2.7	0.6	0.5	1.9	0.3	0.0	
12	0.0262 ± 0.0095	0.3	< 0.5	0.0	0.15	0.15	0.0	
13	1.06 ± 0.19	1.1	0.6		0.4	0.6	0.0	
14	0.89 ± 0.263	0.3	< 0.5	0.0	0.3	0.0	0.0	
15	0.0137 ± 0.0048 eV < m _{l+l-} < 1050		<0.5	0	0	0	0	
1	$ev < m_{\ell+\ell-} < 1050$ 111000 + 16000	.sev 97	<0.5	79	11	5	3	
2	45900 ± 7700	170	<0.5	140	20	10	10	
3	7490 ± 1390	210	<0.5	140	50	10	10	
4	4640 ± 490	26	<0.5	12	10	2	1	
5	994 ± 278	31	<0.5	13	13	4	i	
6	55.4 ± 40.3	16	<0.5	2	10	2	2	
7	444 ± 75	30	<0.5	9	17	2	ĩ	
8	26.2 ± 5.0	26	2.9	6	16	4	2	
9	1.91 ± 0.47	2.0	1.0	0.2	1.5	0.0	0.4	
10	16.4 ± 1.4	6.7	1.4	0.9	4.7	0.8	0.4	
11	5.01 ± 0.93	3.0	1.0	0.6	1.6	0.0	0.8	
12	0.058 ± 0.0176	0.12	<0.5	0.0	0.0	0.0	0.12	
13	1.77 ± 0.2	0.15	< 0.5	0.0	0.15	0.0	0.0	
14	2.32 ± 0.35	0.31	<0.5	0.0	0.31	0.0	0.0	
15	0.113 ± 0.034	0	< 0.5	0	0	0	0	
m /-	/- > 105GeV							
1	2380 ± 320	22	<0.5	11	7	3	1	
2	1720 ± 240	34	<0.5	18	10	4	2	
3	614 ± 157	61	<0.5	21	24	10	6	
4	217 ± 47	10	<0.5	3	6	1	1	
5	57.6 ± 11.5	11	0.7	2	6	3	1	
6	13.7 ± 3.5	8.0	1.2	1.4	3.9	1.8	0.8	
7	70.2 ± 6.0	15	1.4	1	13	2	0	
8	12.6 ± 2.7	15	2.6	2	10	2	1	
9	0.812 ± 0.174	1.4	1.0	0.2	0.7	0.2	0.4	
10	11.7 ± 1.4	3.5	0.8	0.2	2.3	1.1	0.0	
11	1.94 ± 0.41	2.8	1.4	0.3	1.5	0.3	0.7	
12	0.0391 ± 0.0114	0	< 0.5	0	0	0	0	
13	1.36 ± 0.14 0.674 + 0.176	0	< 0.5	0	0 15	0 15	0 47	
14 15	0.674 ± 0.176 0.0137 ± 0.0055	0.78	<0.5	0.0	0.15	0.15	0.47	
15	0.0137 ± 0.0055	0.24	<0.5	U.0	U.U	U.0	0.24	

- Dominating SUSY channel at LHC is $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ production: > 1 pb.
- ⇒ search for direct *un-colored* bosino prodution ("whiteinos") !
- Golden channel: > three lentons

Ch		STC8	Zni	X2X1	$\tilde{\chi}_{2}^{\pm}\chi_{x}$	Other EWK	No EWK		
$m_{\ell^+\ell^-} < 75 GeV$									
1	10900 ± 3300	88	<0.5	76	7	3	2		
2	5900 ± 960	130	< 0.5	110	10	10	0		
	1390 ± 340	140	<0.5	110	20	10	10		
4	1290 ± 210	26	<0.5	16	7	2	2		
5	348 ± 121	19	< 0.5	10	6	2	1		
6	45.1 ± 32.4	8.5	<0.5	2.3	4.5	0.5	1.2		
7	469 ± 125	26	< 0.5	9	12	4	2		
8	29.6 ± 6.8	9.6	0.9	2.5	5.7	0.6	0.8		
9	1.26 ± 0.41	1.0	<0.5	0.2	0.6	0.0	0.3		
10	21.4 ± 3.2	6.6	1.0	1.2	4.6	0.6	0.1		
11	4.48 ± 1.72	2.7	0.6	0.5	1.9	0.3	0.0		
12	0.0262 ± 0.0095	0.3	<0.5	0.0	0.15	0.15	0.0		
13	1.06 ± 0.19	1.1	0.6	0.0	0.4	0.6	0.0		
14	0.89 ± 0.263	0.3	<0.5	0.0	0.3	0.0	0.0		
15	0.0137 ± 0.0048	0	<0.5	0	0	0	0		

- Plethc Good discovery reach, directly related to ILC backg reach.
- \Rightarrow 45 ILC-LHC synergy: precice masses from ILC into • m LHC long decay-chains \Rightarrow detrmine properties of
 - heavier bosinos .

together, $> 5\sigma$ @ < 200 fb⁻¹.

• Signal is a mainly $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$, followed by $\tilde{\chi}_2^{\pm} \chi_x$.

						3	
	10.7 ± 0.0	0.0	1.1.4	1.77	0.3	1.8	0
ž	70.2 ± 6.0	15	1.4	1	13	2	
8	12.6 ± 2.7	15	2.6	2	10	2	
9	0.812 ± 0.174	1.4	1.0	0.2	0.7	0.2	0
10	11.7 ± 1.4	3.5	0.8	0.2	2.3	1.1	0
11	1.94 ± 0.41	2.8	1.4	0.3	1.5	0.3	0
12	0.0391 ± 0.0114	0	< 0.5	0	0	0	
13	1.36 ± 0.14	0	< 0.5	0	0	0	
14	0.674 ± 0.176	0.78	< 0.5	0.0	0.15	0.15	0.
15	0.0137 ± 0.0055	0.24	< 0.5	0.0	0.0	0.0	0.

No sin.

Summary of LHC

If STCx is realised in nature

• LHC will discover something non-SM:

- Central $t\bar{t} \rightarrow hadrons$ events with lots of of missing ET and one isolated lepton.
- Central $b\bar{b}$ events with lots of missing ET, and a tell-tale contraverse mass distribution.
- Insignificant (3 σ) excess in celtral, fully hadronic events with high missing ET.
- A diffuse, highly significant, excess of three-lepton, transversly unbalanced events.
- Largely systematics limited.
- So, there is BSM, but:

Summary of LHC

If STCx is realised in nature

- LHC will discover something non-SM:
 - Central $t\bar{t} \rightarrow hadrons$ events with lots of of missing ET and one isolated lepton.
 - Central *bb* events with lots of missing ET, and a tell-tale contraverse mass distribution.
 - Insignificant (3 σ) excess in celtral, fully hadronic events with high missing ET.
 - A diffuse, highly significant, excess of three-lepton, transversly unbalanced events.
 - Largely systematics limited.
- So, there is BSM, but:

イロト 不得 トイヨト イヨト 正言 ろくの

Summary of LHC

If STCx is realised in nature

- LHC will discover something non-SM:
 - Central $t\bar{t} \rightarrow hadrons$ events with lots of of missing ET and one isolated lepton.
 - Central *bb* events with lots of missing ET, and a tell-tale contraverse mass distribution.
 - Insignificant (3 σ) excess in celtral, fully hadronic events with high missing ET.
 - A diffuse, highly significant, excess of three-lepton, transversly unbalanced events.
 - Largely systematics limited.

• So, there is BSM, but:

イロト 不得 トイヨト イヨト 正言 ろくの

Summary of LHC

If STCx is realised in nature

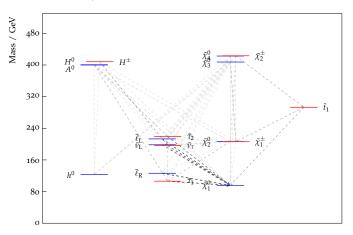
- LHC will discover something non-SM:
 - Central $t\bar{t} \rightarrow hadrons$ events with lots of of missing ET and one isolated lepton.
 - Central *bb* events with lots of missing ET, and a tell-tale contraverse mass distribution.
 - Insignificant (3 σ) excess in celtral, fully hadronic events with high missing ET.
 - A diffuse, highly significant, excess of three-lepton, transversly unbalanced events.
 - Largely systematics limited.
- So, there is BSM, but:

イロト 不得 トイヨト イヨト 正言 ろくの

Summary of LHC

If STCx is realised in nature

- LHC will discover something non-SM:
 - Central $t\bar{t} \rightarrow hadrons$ events with lots of of missing ET and one isolated lepton.
 - Central bb events with lote of missing ET and a tell-tale contraverse mass distribition What is it ?
 - Insignificant missing ET.


Is it SUSY?

nic events with high

- A diffuse, highly significant, excess of three-lepton, transversly unbalanced events.
- Largely systematics limited.
- So, there is BSM, but:

The STCx benchmark @ ILC

Zoomed STCx mass-spectrum

Mikael Berggren (DESY)

-

Observables:

Observable	Gives	lf
Edges (or average and		not too far from
width)	Masses	threshold
Shape of spectrum	Spin	
Angular distributions	Mass, Spin	
Invariant mass distributions		
from full reconstruction	Mass	cascade decays
Angular distributions from		
full reconstruction	Spin, CP,	masses known
Un-polarised Cross-section		
in continuum	Mass, coupling	
Polarised Cross-section	Mass, coupling,	
in continuum	mixing	
Decay product polarisation	Mixing	$\tilde{\tau}$ decays
Threshold-scan	Mass(es), Spin	

Channels and observables at 250, 350 and 500 GeV

Channel	Threshold	Available at	Can give
$\tilde{ au}_1 \tilde{ au}_1$	212	250	$M_{\tilde{ au}_1}, \tilde{ au}_1$ nature,
			au polarisation
$ ilde{\mu}_{ m R} ilde{\mu}_{ m R}$	252	250+	+ $M_{\tilde{\mu}_{\mathrm{R}}}, M_{\tilde{\chi}_{1}^{0}}, \tilde{\mu}_{\mathrm{R}}$ nature
$\tilde{e}_R\tilde{e}_R$	252	250+	+ $M_{\tilde{e}_{\rm R}}, M_{\tilde{\chi}_1^0}, \tilde{e}_{\rm R}$ nature
$ ilde{\chi}_1^0 ilde{\chi}_2^{0^{*)}}$	302	350	+ $M_{\tilde{\chi}^0_2}, M_{\tilde{\chi}^0_1}$, nature of $\tilde{\chi}^0_1, \tilde{\chi}^0_2$
$\tilde{ au}_1 \tilde{ au}_2^{*)}$	325	350	+ $M_{\tilde{\tau}_2} \theta_{mix} \tilde{\tau}$
$\tilde{e}_R \tilde{e}_L^{*)}$	339	350	+ $M_{\tilde{e}_L}$, $\tilde{\chi}_1^0$ mixing, \tilde{e}_L nature
$\tilde{\nu}_{\tilde{\tau}}\tilde{\nu}_{\tilde{\tau}}$	392	500	7 % visible BR ($\rightarrow \tilde{\tau}_1 W$)
$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm *)}$	412	500	+ $M_{\tilde{\chi}_1^{\pm}}$, nature of $\tilde{\chi}_1^{\pm}$
$\tilde{e}_L \tilde{e}_L^{*)}$	416	500	+ $M_{\tilde{e}_L}$, $M_{\tilde{\chi}_1^0}$, \tilde{e}_L nature
$ ilde{\mu}_{ m L} ilde{\mu}_{ m L}{}^{*)}$	416	500	+ $M_{\tilde{\mu}_{\mathrm{R}}}, M_{\tilde{\chi}_{1}^{0}}, \tilde{\mu}_{\mathrm{R}}$ nature
$\tilde{\tau}_2 \tilde{\tau}_2^{*)}$	438	500	+ $M_{\tilde{\tau}_2}, M_{\tilde{\chi}_1^0}, \tilde{\tau}_2$ nature, $\theta_{mix \ \tilde{\tau}}$
$ ilde{\chi}_1^0 ilde{\chi}_3^{0^{*)}}$	503	500+	+ $M_{\tilde{\chi}_3^0}, M_{\tilde{\chi}_1^0}$, nature of $\tilde{\chi}_1^0, \tilde{\chi}_3^0$

*): Cascade decays.

+ invisible
$$\tilde{\chi}_1^0 \tilde{\chi}_1^0$$
, $\tilde{\nu}_{\tilde{e} \ \tilde{\mu}} \tilde{\nu}_{\tilde{e} \ \tilde{\mu}}$.

Mikael Berggren (DESY)

The generic STCx signal at ILC is a few SM-particles, usually leptons, and lots of missing energy and momentum.

- So: Background from SM:
 - Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f\bar{f}\nu\nu$
 - Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow ff\gamma$, with γ un-detected.

イロト 不得 トイヨト イヨト 正言 ろくの

The generic STCx signal at ILC is a few SM-particles, usually leptons, and lots of missing energy and momentum.

- So: Background from SM:
 - Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f\bar{f}\nu\nu$
 - Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow ff\gamma$, with γ un-detected.

イロト 不得 トイヨト イヨト 正言 ろくの

The generic STCx signal at ILC is a few SM-particles, usually leptons, and lots of missing energy and momentum.

- So: Background from SM:
 - Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f\bar{f}\nu\nu$
 - Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow ff\gamma$, with γ un-detected.

The generic STCx signal at ILC is a few SM-particles, usually leptons, and lots of missing energy and momentum.

- So: Background from SM:
 - Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f\bar{f}\nu\nu$
 - Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow f\bar{f}\gamma$, with γ un-detected.

- The $\tilde{\tau}_1$ is the NLSP.
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.3 \text{ GeV}$, $E_{\tau,max} = 45.5 \text{ GeV}$: $\gamma\gamma - background \Leftrightarrow pairs - background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 52.4 \text{ GeV}, E_{\tau,max} = 150.0 \text{ GeV}$: $WW \rightarrow l\nu l\nu - background \Leftrightarrow Polarisation.$
- For ẽ_Ror μ̃_R: :E_{l,min} = 7.3 GeV, E_{l,max} = 99.2 GeV: Neither γγ nor WW → lνlν background severe.
- For pol=(1,-1): σ(ẽ_Rẽ_R) = 1.3 pb !
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 70 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

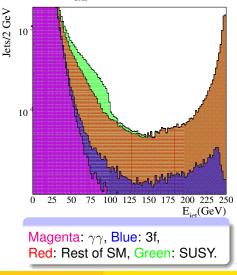
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.3 \text{ GeV}$, $E_{\tau,max} = 45.5 \text{ GeV}$: $\gamma\gamma - background \Leftrightarrow pairs - background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 52.4 \text{ GeV}, E_{\tau,max} = 150.0 \text{ GeV}$: $WW \rightarrow l\nu l\nu - background \Leftrightarrow Polarisation.$
- For ẽ_Ror μ̃_R: :E_{I,min} = 7.3 GeV, E_{I,max} = 99.2 GeV: Neither γγ nor WW → IνIν background severe.
- For pol=(1,-1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 70 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.3 \text{ GeV}$, $E_{\tau,max} = 45.5 \text{ GeV}$: $\gamma\gamma - background \Leftrightarrow pairs - background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 52.4 \text{ GeV}, E_{\tau,max} = 150.0 \text{ GeV}$: $WW \rightarrow l\nu l\nu - background \Leftrightarrow Polarisation.$
- For ẽ_Ror μ̃_R: :E_{I,min} = 7.3 GeV, E_{I,max} = 99.2 GeV: Neither γγ nor WW → IνIν background severe.
- For pol=(1,-1): σ(ẽ_Rẽ_R) = 1.3 pb !
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 70 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.3 \text{ GeV}$, $E_{\tau,max} = 45.5 \text{ GeV}$: $\gamma\gamma - background \Leftrightarrow pairs - background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 52.4 \text{ GeV}, E_{\tau,max} = 150.0 \text{ GeV}$: $WW \rightarrow l\nu l\nu - background \Leftrightarrow Polarisation.$
- For ẽ_Ror μ̃_R: :E_{I,min} = 7.3 GeV, E_{I,max} = 99.2 GeV: Neither γγ nor WW → IνIν background severe.
- For pol=(1,-1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 70 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

STC4 @ 500 GeV

Strategy:


- Global preselection to reduce SM, while efficiency for all signals stays above \sim 90 %.
- The further select for all sleptons ($\tilde{e}_R, \tilde{e}_L, \tilde{\mu}_R, \tilde{\mu}_L, \tilde{\tau}_1$).
- Next step: specific selections for \tilde{e}_R and $\tilde{\mu}_R$, for \tilde{e}_L and $\tilde{\mu}_L$, and for $\tilde{\tau}_1$.
- Last step: add particle id to separate ẽ and μ̃, special cuts for τ̃₁.
- Check results both for RL and LR beam-polarisation.

STC4 global

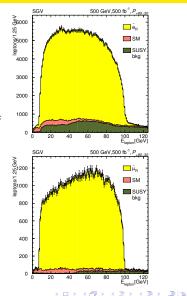
After a few very general cuts:

- Missing energy > 100
- Less than 10 charged tracks
- $|\cos \theta_{Ptot}| < 0.95$
- Exactly two τ-jets
- Visible mass < 300 GeV
- θ_{acop} between 0.15 and 3.1

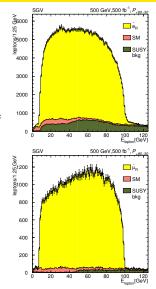
E_{CMS}=500 GeV, Pol=+0.8,-0.3

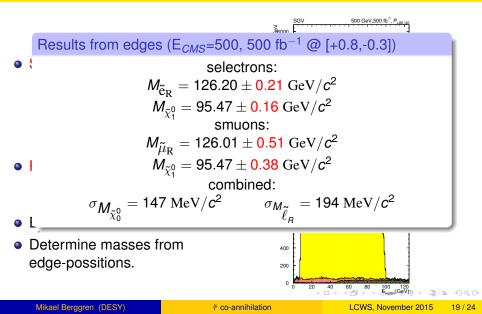
• Selections for $\tilde{\mu}$ and \tilde{e} :

- Correct charge.
- P_T wrt. beam and one ℓ wrt the other.
- Tag and probe, ie. accept one jet if the other is "in the box".


• Further selections for R:

- Cuts on polar angle and angle between leptons.
- E_{jet}, beam-pol 80%,-30%...
- Determine masses from edge-possitions.


• Selections for $\tilde{\mu}$ and \tilde{e} :


- Correct charge.
- P_T wrt. beam and one ℓ wrt the other.
- Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{jet}, beam-pol 80%,-30%...
- Determine masses from edge-possitions.

- Selections for $\tilde{\mu}$ and \tilde{e} :
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{jet}, beam-pol 80%,-30%...
- Determine masses from edge-possitions.

- Selections for $\tilde{\mu}$ and \tilde{e} :
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{jet}, beam-pol 80%,-30%...
- Determine masses from edge-possitions.

\tilde{e}_R and $\tilde{\mu}_R$ threshold scans

From these spectra, we can estimate $M_{\tilde{e}_R}$, and $M_{\tilde{\chi}_1^0}$ to < 0.2 GeV, and $M_{\tilde{\mu}_R}$ to < 0.5 GeV.

STCx @ 500 GeV: $\tilde{e}, \tilde{\mu}, \tilde{\tau}_1$

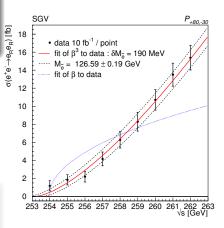
\tilde{e}_R and $\tilde{\mu}_R$ threshold scans

From these spectra, we can estimate $M_{\tilde{e}_R}$, and $M_{\tilde{\chi}_1^0}$ to < 0.2 GeV, and $M_{\tilde{\mu}_R}$ to < 0.5 GeV.

So: Next step is $M_{\tilde{\ell}}$ from threshold:

• 10 points, 10 $fb^{-1}/point$.

- Luminosity $\propto E_{CMS}$, so this is $\Leftrightarrow 170 \text{ fb}^{-1} @ E_{CMS} = 500 \text{ GeV}.$
- Error on $M_{\tilde{\mu}_R}$ and $M_{\tilde{e}_R}$ = 200 MeV.
- Fermion hypothesis excluded with fit-probabilities $< 10^{-5}$

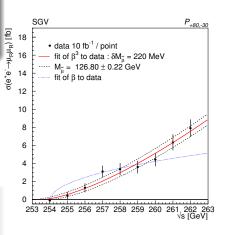

Mikael Berggren (DESY)

\tilde{e}_R and $\tilde{\mu}_R$ threshold scans

From these spectra, we can estimate $M_{\tilde{e}_R}$, and $M_{\tilde{\chi}_1^0}$ to < 0.2 GeV, and $M_{\tilde{\mu}_R}$ to < 0.5 GeV.

So: Next step is $M_{\tilde{\ell}}$ from threshold:

- 10 points, 10 fb⁻¹/point.
- Luminosity $\propto E_{CMS}$, so this is $\Leftrightarrow 170 \text{ fb}^{-1} @ E_{CMS} = 500 \text{ GeV}.$
- Error on $M_{\tilde{\mu}_R}$ and $M_{\tilde{e}_R}$ = 200 MeV.
- Fermion hypothesis excluded with fit-probabilities $< 10^{-5}$

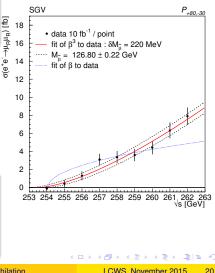


\tilde{e}_R and $\tilde{\mu}_R$ threshold scans

From these spectra, we can estimate $M_{\tilde{e}_R}$, and $M_{\tilde{\chi}_1^0}$ to < 0.2 GeV, and $M_{\tilde{\mu}_R}$ to < 0.5 GeV.

So: Next step is $M_{\tilde{\ell}}$ from threshold:

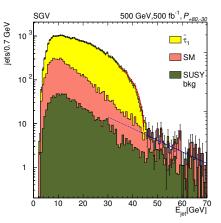
- 10 points, 10 fb⁻¹/point.
- Luminosity $\propto E_{CMS}$, so this is $\Leftrightarrow 170 \text{ fb}^{-1} @ E_{CMS} = 500 \text{ GeV}.$
- Error on $M_{\tilde{\mu}_R}$ and $M_{\tilde{e}_R}$ = 200 MeV.
- Fermion hypothesis excluded with fit-probabilities < 10⁻⁵


Mikael Berggren (DESY)

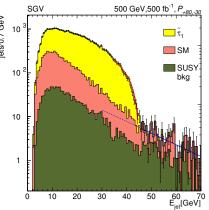
\tilde{e}_{R} and $\tilde{\mu}_{R}$ threshold scans

From these spectra, we can estimate $M_{\tilde{e}_{\mathbf{p}}}$, and $M_{\tilde{\chi}_{\mathbf{p}}^{0}}$ to < 0.2 GeV, and $M_{\tilde{\mu}_{\rm R}}$ to < 0.5 GeV.

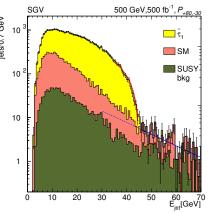
So: Next step is $M_{\tilde{\ell}}$ from threshold:


- 10 points, 10 fb $^{-1}$ /point.
- Luminosity $\propto E_{CMS}$, so this is \Leftrightarrow 170 fb⁻¹ @ E_{CMS} =500 GeV.
- Error on $M_{\tilde{\mu}_{\rm P}}$ and $M_{\tilde{\rm e}_{\rm P}}$ = 200 MeV.
- Fermion hypothesis excluded with fit-probabilities $< 10^{-5}$

STC4 sleptons @ 500 GeV: $\tilde{\tau}_1$

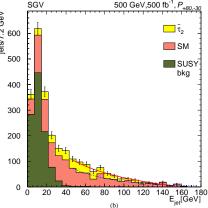

Selections for $\tilde{\tau}_1$:

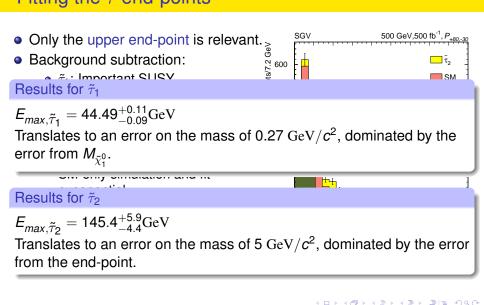
- Correct charge.
- P_T wrt. beam and one τ wrt the other.
- $M_{jet} < M_{ au}$
- $E_{vis} < 120 \text{ GeV}, M_{vis} \in [20, 87] \text{ GeV}.$
- Cuts on polar angle and angle between leptons.
- Little energy below 30 deg, or not in *τ*-jet.
- At least one τ -jet should be hadronic.
- Anti- $\gamma\gamma$ likelihood.


• = • • = •

- Only the upper end-point is relevant.
 - - $\tilde{\tau}_2$: ~ no SUSY background above
- Fit line to (data-background fit).

・ 同 ト ・ ヨ ト ・ ヨ ト


- Only the upper end-point is relevant. background, but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - $\tilde{\tau}_2$: ~ no SUSY background above
- Fit line to (data-background fit).


伺い イヨト イヨト

- Only the upper end-point is relevant. background, but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - $\tilde{\tau}_2$: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.

Fit line to (data-background fit).

A B F A B F

Reminder: SPS1a' results (Phys.Rev.D82:055016,2010)

The previous $\tilde{\tau}$ study in the very similar model SPS1a' gave:

Results for $\tilde{\tau}_1$	Results from cross-section for $ ilde{ au}_1$
$M_{ ilde{ au}_1} = 107.73^{+0.03}_{-0.05} { m GeV}/c^2 \oplus 1.3\Delta(M_{ ilde{\chi}^0_1})$	$\Delta(N_{signal})/N_{signal}=3.1\% ightarrow\Delta(M_{\widetilde{ au}_1})=3.2{ m GeV}/c^2$
The error from $M_{\tilde{\chi}_1^0}$ largely	
dominates	Results from cross-section for $\tilde{\tau}_2$
Results for $\tilde{\tau}_2$ $M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{GeV}/c^2 \oplus 18\Delta(M_{\tilde{\chi}_1^0})$ The error from the endpoint	$\begin{array}{l} \Delta(N_{signal})/N_{signal}=4.2\% ightarrow\ \Delta(M_{\widetilde{ au}_2})=3.6 { m GeV}/c^2\ { m End-point}$ + Cross-section $ ightarrow \Delta(M_{\widetilde{ au}_1^0})=1.7 { m GeV}/c^2 \end{array}$
largely dominates	
	Also: $ au$ polarisation in $ ilde{ au}_1$ decays
	$\Delta(\mathcal{P}_{\tau})/\mathcal{P}_{\tau}$ = 9 %.

We have done a combined ILC-LHC study of a SUSY model that fulfils all current constraints. The model has good visibility at *both* machines.

- At LHC: study
 - Methods for discovery
 - Control of systematics essential.
 - Insight in coloured sector, in synergy with ILC.
- The observations will discover BSM physics., both in the coloured and EW sectors.
- But had to say what physics it is.
- At ILC: Study best method to analyse spectra, eg
 - Optimal statistic for clean signals.
 - Specific reconstruction methods for e, μ , and τ .
- At ILC, will be able to un-ambiguously identify the new physics as SUSY, and to constrain the model.

We have done a combined ILC-LHC study of a SUSY model that fulfils all current constraints. The model has good visibility at *both* machines.

- At LHC: study
 - Methods for discovery
 - Control of systematics essential.
 - Insight in coloured sector, in synergy with ILC.
- The observations will discover BSM physics., both in the coloured and EW sectors.
- But had to say what physics it is.
- At ILC: Study best method to analyse spectra, eg
 - Optimal statistic for clean signals.
 - Specific reconstruction methods for e, μ , and τ .

• At ILC, will be able to un-ambiguously identify the new physics as SUSY, and to constrain the model.

We have done a combined ILC-LHC study of a SUSY model that fulfils all current constraints. The model has good visibility at *both* machines.

- At LHC: study
 - Methods for discovery
 - Control of systematics essential.
 - Insight in coloured sector, in synergy with ILC.
- The observations will discover BSM physics., both in the coloured and EW sectors.
- But had to say what physics it is.
- At ILC: Study best method to analyse spectra, eg
 - Optimal statistic for clean signals.
 - Specific reconstruction methods for e, μ , and τ .
- At ILC, will be able to un-ambiguously identify the new physics as SUSY, and to constrain the model.

We have done a combined ILC-LHC study of a SUSY model that fulfils all current constraints. The model has good visibility at *both* machines.

• At LHC: study

 Meth 	ILC and LHC	1
ContInsig	Combining ILC precision with LHC reach the will allow to extend the model study to	
The obse	the will allow to extend the model study to	he coloured
and EW :	bosinos, ie. to the full spectrum.	
But had to		ļ

- At ILC: Study best method to analyse spectra, eg
 - Optimal statistic for clean signals.
 - Specific reconstruction methods for e, μ , and τ .
- At ILC, will be able to un-ambiguously identify the new physics as SUSY, and to constrain the model.

Thank You !

<ロト < @ ト < E ト < E ト 三日 のQ@</p>

BACKUP SLIDES

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if *E_{beam}* >> *M_X*, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold !
- Note that there are two decays in each event: two measurements per event.

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if *E_{beam}* >> *M_X*, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold !
- Note that there are two decays in each event: two measurements per event.

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if *E_{beam}* >> *M_X*, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold !
- Note that there are two decays in each event: two measurements per event.

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if *E_{beam}* >> *M_X*, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold !
- Note that there are two decays in each event: two measurements per event.
- Also note that there are not enough measurements to make a constrained fit, even assuming that the two SUSY particles in the two decays are the same: (2 × 4 unknown components of 4-momentum (=8)) (total E and p conservation (=4) + 2

Observables: Pair-production, two-body decay

However:

- If the masses are known from other measurements, there are enough constraints.
- Then the events can be completely reconstructed ...
- ... and the angular distributions both in production and decay can be measured.
- From this the spins can be determined, which is essential to determine that what we are seeing is SUSY.

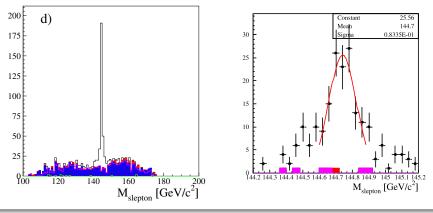
Furthermore:

- Looking at more complicated decays, such as cascade decays, there are enough constraints if some (but not all) masses are known.
- Allows to reconstruct eg. the slepton mass in [˜]_{χ2} → ℓℓ → ℓℓ[˜]_{χ1} if chargino and LSP masses are known.

Observables: Pair-production, two-body decay

However:

- If the masses are known from other measurements, there are enough constraints.
- Then the events can be completely reconstructed ...
- ... and the angular distributions both in production and decay can be measured.
- From this the spins can be determined, which is essential to determine that what we are seeing is SUSY.


Furthermore:

- Looking at more complicated decays, such as cascade decays, there are enough constraints if some (but not all) masses are known.
- Allows to reconstruct eg. the slepton mass in $\tilde{\chi}_2^0 \rightarrow \tilde{\ell}\ell \rightarrow \ell\ell\tilde{\chi}_1^0$ if chargino and LSP masses are known.
- Order-of-magnitude better mass resolution.

Observables: Pair-production, two-body decay

However:

• If the masses are known from other measurements, there are

- The cross-section in e⁺e⁻ →XX close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle → properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In τ̃ → τχ̃₁⁰ → Xν_τχ̃₁⁰.

- The cross-section in e⁺e⁻ →XX close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle → properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In τ̃ → τ χ̃₁⁰ → Xν_τ χ̃₁⁰.

- The cross-section in e⁺e⁻ →XX close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle → properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In τ̃ → τ χ̃₁⁰ → Xν_τ χ̃₁⁰.

- The cross-section in e⁺e⁻ →XX close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle → properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In τ̃ → τχ̃₁⁰ → Xν_τχ̃₁⁰.

Extracting the $\tilde{\tau}$ properties

See Phys.Rev.D82:055016,2010

Use polarisation (0.8,-0.22) to reduce bosino background.

From decay kinematics:

- $M_{\tilde{\tau}}$ from $M_{\tilde{\chi}_{\tau}^{0}}$ and end-point of spectrum = $E_{\tau,max}$.
- Other end-point hidden in γγ background:Must get M_{χ̃1} from other sources. (μ̃, ẽ, ...)

From cross-section:

•
$$\sigma_{\tilde{\tau}} = A(\theta_{\tilde{\tau}}, \mathcal{P}_{beam}) \times \beta^3/s$$
, so
• $M_{\tilde{\tau}} = E_{beam} \sqrt{1 - (\sigma s/A)^{2/3}}$: no $M_{\tilde{\chi}_1^0}$!

From decay spectra:

• \mathcal{P}_{τ} from exclusive decay-mode(s): handle on mixing angles $\theta_{\tilde{\tau}}$ and $\theta_{\tilde{\chi}_{1}^{0}}$

Backup a

$ilde{ au}$ channels

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

 $\tilde{\ell}$ properties:

- Only two particles (possibly *τ*:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts.

Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = \pm 1,
- $M_{jet} < 2.5 \, \text{GeV}/c^2$,
- *E_{vis}* significantly less than E_{CMS}.
- *M_{miss}* significantly less than *M_{CMS}*.
- No particle with momentum close to E_{beam}.
 - ●●● 単則 本語を 本語を 本語を

$\tilde{\tau}$ channels

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

 $\tilde{\ell}$ properties:

- Only two particles (possibly *τ*:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

+ anti $\gamma\gamma$ cuts.

Select this by:

- Exactly two jets.
- *N_{ch}* < 10
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- *E_{vis}* significantly less than E_{CMS}.
- *M_{miss}* significantly less than *M_{CMS}*.
- No particle with momentum close to E_{beam}.

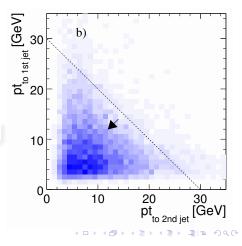
$\tilde{\tau}$ channels

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

 $\tilde{\ell}$ properties:

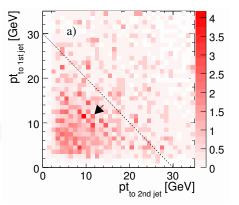
- Only two particles (possibly *τ*:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts.


Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- *E_{vis}* significantly less than E_{CMS}.
- *M_{miss}* significantly less than *M_{CMS}*.
- No particle with momentum close to E_{beam}.

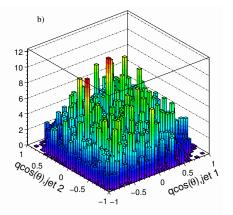
• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(*q_{iet1}* cos θ_{iet1}, *q_{iet2}* cos θ_{iet2}



• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

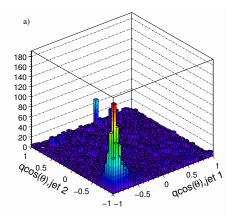
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2}



• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

τ₂:

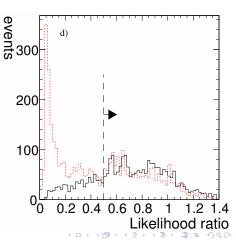
- Other side jet not ${\it e}$ or μ
- Most energetic jet not ${\it e}$ or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})



• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

τ₂:

- Other side jet not ${\it e}$ or μ
- Most energetic jet not ${\it e}$ or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

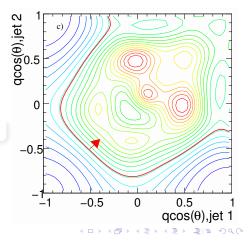

 $\tilde{\tau}$ channels

$\tilde{\tau}_1$ and $\tilde{\tau}_2$ further selections

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

- Other side jet not ${\it e}$ or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

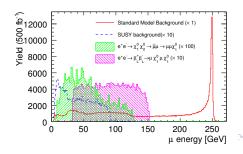
 $\tilde{\tau}$ channels


$\tilde{\tau}_1$ and $\tilde{\tau}_2$ further selections

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

τ₂:

- Other side jet not e or μ
- Most energetic jet not ${\it e}$ or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

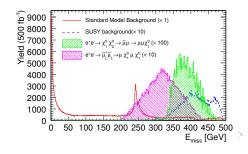

- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.
- τ₂:
 - $\bullet~$ Other side jet not $e~{\rm or}~\mu$
 - Most energetic jet not ${\it e}$ or μ
 - Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{L}\tilde{\mu}_{L} \rightarrow \mu\mu\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ • $\tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0} \rightarrow \mu\tilde{\mu}_{R}\tilde{\chi}_{1}^{0} \rightarrow \mu\mu\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$
- Momentum of *µ*:s
- E_{miss}

• $M_{\mu\mu}$

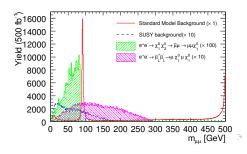

Channels with μ :s

$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{L}\tilde{\mu}_{L} \rightarrow \mu\mu\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ • $\tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0} \rightarrow \mu\tilde{\mu}_{R}\tilde{\chi}_{1}^{0} \rightarrow \mu\mu\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$
- Momentum of *µ*:s
- E_{miss}

• $M_{\mu\mu}$

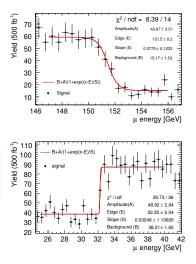


Channels with μ :s

$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L} \rightarrow \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0$ • $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \mu \tilde{\mu}_R \tilde{\chi}_1^0 \rightarrow \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$
- Momentum of μ :s
- E_{miss}
- Μ_{µµ}



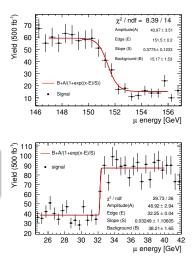
$\tilde{\mu}_{\mathrm{L}}\tilde{\mu}_{\mathrm{L}}$

Selections

- $\theta_{missingp} \in [0.1\pi; 0.9\pi]$
- $E_{miss} \in [200, 430] \text{GeV}$
- $M_{\mu\mu} \notin [80.100] \text{GeV}$ and > 30 GeV/c^2
- Masses from edges. Beam-energy spread dominates error.

$$\Delta(M_{ ilde{\chi}_1^0}) = 920 \mathrm{MeV}/c^2$$

 $\Delta(M_{ ilde{\mu}_\mathrm{L}}) = 100 \mathrm{MeV}/c^2$

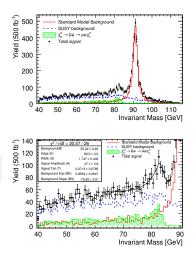


$\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L}$

Selections

- $\theta_{missingp} \in [0.1\pi; 0.9\pi]$
- $E_{miss} \in [200, 430] \text{GeV}$
- $M_{\mu\mu} \notin [80.100] \text{GeV}$ and > 30 GeV/c^2
- Masses from edges. Beam-energy spread dominates error.

$$\Delta(M_{ ilde{\chi}_1^0}) = 920 {
m MeV}/c^2 \ \Delta(M_{ ilde{\mu}_{
m L}}) = 100 {
m MeV}/c^2$$

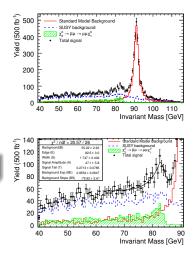


Selections

- $\theta_{missingp} \in [0.2\pi; 0.8\pi]$
- $p_{Tmiss} > 40 {
 m GeV}/c$
- β of μ system > 0.6.
- $E_{miss} \in [355, 395]$ GeV

Masses from edges. Beam-energy spread dominates error.

 $\Delta(M_{\tilde{\chi}^0_2}) = 1.38 {
m GeV}/c^2$



Selections

- $\theta_{missingp} \in [0.2\pi; 0.8\pi]$
- $p_{Tmiss} > 40 {
 m GeV}/c$
- β of μ system > 0.6.
- $E_{miss} \in [355, 395]$ GeV
- Masses from edges. Beam-energy spread dominates error.

$$\Delta(M_{{\widetilde \chi}^0_2})=1.38 {
m GeV}/c^2$$

