Radiation Issues in the ILC Linac Tunnel

T.Sanami (KEK)

The ILC Linac Tunnel

• ILC Linac Tunnel cross section of TDR

T.Sanami / Nov 3, 2015 11:10 Beam Dynamics - WG/LCWS2015

Radiation issues

- According to Kubo-san's request
 - What parameters are required for radiation issues in ML
 - As short as possible
- Radiation shielding design of the ILC Linac tunnel
 - Dose rate in service tunnel
 - Central wall thickness, size of penetrations, access between tunnels
 - Personal and devices
 - Radioactivity production in liquid helium, tunnel air and soil
- These evaluations relay on beam losses scenario

Beam loss scenario of the ILC linac

- Beam loss
 - Normal operation
 - Beam commissioning or MIs-steering
 - System failure
 - Dark current
 - None of description in TDR
 - Few consideration on normal state (K.Kubo at 2nd ADI)
 - Several suggestion for system failure (E.Patterson at ADI)
 - Beam containment and monitoring system

Issues to establish beam loss

- Handle 9+9 MW beam at maximum
 - Extremely few beam loss is assumed at this moment
 - Dark current loss
 - How do we control the beam loss
- System failure
 - What is the most probable scenario?
 - How do we ensure maximum credible loss?

What should we do now?

- Physics to implementation
 - Physics determines maximum gradient and beam intensity
 - Technology determines beam losses to realize the physics
 - Design tunnel and shielding to accommodate above items
 - Only COST can limit and go against
- Starting CFS basic design
 - It is not conceptual, close to engineering implementation
 - More accurate cost estimation
 - The design should be proceeded based on approved documents
 - TDR and several change requests

Beam loss to radiation shielding design

- Dark current
 - Reported by N.Solyak
 - Confirm simulation results using existing facility
- Normal operation
 - Beam gas coulomb, beam gas Bremsstrahlung, Anything else?
- System failure
 - The minimum response time is about 10% of the train
- Beam containment system and MPS
- Beam commissioning phase
- More realistic numbers are requested for entire ML tunnel

Dose rate for dark current

Normal loss : 6.875e10eps (50nA per cavity eq.) due to dark current

The other items should be evaluated

- Dark current +Normal operation beam loss
 - Tritium production in liquid helium
 - Radioactivity production in tunnel air
 - Radioactivity production of soil surrounding the tunnel
 - Shielding design for access hall
 - Damage to electronics
- System failure
 - Shielding design for access hall

Conclusion

- Current beam loss scenario from radiation shielding design point of view
 - It is required for CFS basic planing
 - Still we have several unknown parameters
 - Dark current study is in progress, check simulation using existing facilities.
 - Feedback from experience of cryo-module construction