Design of the Spin rotator/flipper section for the ILC

L.I. Malysheva

Hamburg University/DESY

Outline

- Motivation
- Spin rotation for the ILC
 - PLTR section
 - PLTR modification
- Design of positron spin-flipper
 - Requirements and constrains
 - optic files examples (MAD8)
- Results

Motivation I

- The use of the polarised beam enhance possibility of the precision measurement at the ILC (see G. Moortgat-Pick talk)
- Increase of effective luminosity using (-+) and (+-) helicity pattern of e+ and e- beams
- Production and transport of e⁺/e⁻ were already investigated in great details
- The e⁺/e⁻ beam produced longitudinally polarised
- At the IP longitudinal polarisation is expected
- In Damping Ring only the vertical component of polarisation is preserve, thus the spin rotators are necessary and were already included in TDR

Motivation II

- The suitable combination of e⁺/e⁻ polarised beams enhance signal rates and supress unwanted background
- fast helicity reversal is required: for e-: change the polarity of laser beam
- for e^{+ :} helicity of undulator cannot be changed
- The solution is a dedicated helicity flipper
- BUT... a properly designed spin rotator section can be used for this purpose
- Some examples of possible layout were investigated at DESY (Hamburg) in 2012
- Fully matched lattice files for various configurations are available

An Example of SPIN-FLIPPER with helicity rotation From K. Moffeit et al., SLAC-TN-05-045

Spin Rotation for the ILC

Dipole bending magnet

Rotation in (x,s) plane

at 5 GeV:

orbital rotation of 7.9316° 90° Spin rotation of

$$\delta\theta_{spin} \propto \frac{(g-2)}{2} \gamma \delta\theta_{orbit}$$

Solenoid field

Rotation in (x,y) plane

$$B_{||}$$

orbital rotation of 45° 90°

Spin rotation of

$$\delta\theta_{spin} = \left[1 + \frac{g - 2}{2}\right] \frac{B_s L_s}{B_0 \rho} \approx 2\theta_{rot}$$

PLTR: Positron Linac To Ring system (2011)

Е	Arc length=27.769m	Angle =0.415
D	Length=123.595m	
С	Arc length=14.258m	0.168
В	Length=123.590m	

9.6430

Section B is a transport line
Vertical separation of positrons for 2 DR
1.3*2=2.6 m spin direction is not affected here

23.795°

Extract positrons from Positron Booster Linac (PBSTR) at the beginning of PLTR

- Rotate spin to the vertical direction (D)
 Match the longitudinal beam size to the DR acceptance (Energy compressor) (D)
- Inject to DR at the end of PLTR

(2n+1)*7.9316° orbital rotation

Ε

Modification of the section E (bend) and D(straight section)

- New arc $(23.795^{\circ} \text{ orbital } = 3x90^{\circ} \text{ spin })$
- •Length of D is increased 123.595 m
- Space between the energy compressor and spin rotator
- •2 parallel lines with opposite polarities with 2m separation
- spin rotator section(s) with opposite solenoid field
- merger line to recombine

Spin flipper section requirements

- an achromat bend: FODO structure ("0" dispersion)
- Dogleg design (to cancel all the extra rotation)
- total length including rotator section <80m
- Min length- max phase advance.
- the first cell is irregular FODO cell which should include fast kickers and separate the branches horizontally
- At the parallel section the branch separation is about 2 m.
- It is also good to have an "asymmetric design" which gives smaller horizontal separation about 1m
- The region must be dispersion free to minimize emittance growths

Spin flipper/spin rotator section solenoids

- Solenoid 1: 8.32 m long solenoid consists of 16 short sections. Field=3.16 T-m, 26.18 T-m integrated field from (Nosochkov/Zhou). The same solenoid was used in W.Liu PLRT design (now in TDR)
- In April 2012 second version of solenoid was suggested by V. Kashikhin: Solenoid 2: Field = 5.24 T, Length = 2.5 m, Integrated field/solenoid = 13.1 T-m, for both 26.2 T-m.
- NOW solenoid specs in TDR are different from the solenoid used in the lattice for PLRT (W. Liu)(Please, correct me, if I'm wrong)
- Our versions of PLTR lattices are done for BOTH solenoids

Example of Lattice with solenoid 1

Example of Lattice section with solenoid 2

Example of lattice with Solenoid 1 with matching to RF section (from the left)

Beam parameters sent by W.Liu on entrance to section

$$\beta_x = 30.87888$$

$$\alpha_{x} = -3.8976$$

$$D_x = 0.0039859 DP_x = 0.0005205$$

$$\beta_{\rm v} = 6.165833$$

$$\alpha_{v}$$
 =-0.160898

$$D_v = 0$$

$$Dp_v^{\hat{}} = 0$$

PLTR1 matched section with solenoid 1

Beam parameters obtained by MAD8 at the Matching point (left)

$$\beta_x = 26.9175$$

$$\alpha_x = -1.268$$

$$D_x = 0$$

$$D_{Px} = 0$$

$$\beta_{y} = 21.7363$$

$$\alpha_{v}^{\hat{}} = -1.4879$$

$$\hat{D_y} = 0$$

$$\hat{Dp}_y = 0$$

PLTR +Solenoid 2 (example)

L.I. Malysheva

Asymmetric design

- Save transverse space: shift solenoids sections by 6-11 m
- The horizontal offset of 0.54m
- Adding one or two extra FODO cells in one branch before solenoid and after solenoid in second branch
- New optics
- Length of D is fixed, new matching of section was done (123.595 m for D section)

Asymmetric design with solenoid 1

extra FODO cells are placed after solenoid

For the second branch extra FODO cells are placed before solenoid

 $D_c(m)$, D_c

Asymmetric design with solenoid 2

More examples of lattices are available and still there at DESY

```
rw-r--r-- 1 malyshev lc 14546 Mar 11
                                      2012 PLTR.xsif
rw-r--r-- 1 malyshev lc 18237 Mar 12
                                      2012 my+PLTR.xsif
rw-r--r-- 1 malyshev lc 18269 Mar 14
                                      2012 Larisa PLTR.xsif
-rw-r--r-- 1 malyshev lc 18237 Apr 10
                                      2012 Larisa PLTR1.ele
-rw-r--r-- 1 malyshev lc 18310 Apr 16
                                      2012 Larisa PLTR1.xsif
-rw-r--r-- 1 malyshev lc 9360 Apr 19
                                      2012 my assym 0.75 good.xsif
                                      2012 my assym 0.75 alldata.xsif
rw-r--r-- 1 malyshev lc 9529 Apr 19
                                      2012 my assym 0.75 best.xsif
-rw-r--r-- 1 malyshev lc 9134 Apr 19
                                      2012 my assym 0.75.xsif
-rw-r--r-- 1 malyshev lc 9312 Apr 20
-rw-r--r-- 1 malyshev lc 2354 Apr 23
                                      2012 Short sol.xsif
-rw-r--r-- 1 malyshev lc 18997 Apr 23
                                      2012 Larisa PLTR1 New sol.xsif
                                      2012 My assym.xsif~
-rw-r--r-- 1 malyshev lc 10488 Apr 26
-rw-r--r-- 1 malyshev lc 6276 Apr 26
                                      2012 My assym.xsif
rw-r--r-- 1 malyshev lc 8002 May 2
                                      2012 My assym 2.xsif~
                                      2012 My assym 2.xsif
-rw-r--r-- 1 malyshev lc 8869 May 3
```

See also:

L.I. Malysheva et al., The Spin rotator with a possibility of helicity switching for polarized positrons at the ILC, Helmholtz Alliance Linear Collider Forum, Proceedings of the Workshops, Hamburg, Munich, Hamburg 2010-2012, p.570, http://www-library.desy.de/confprocs.html

Status

- The lattices for spin-flipper /spin rotator section of PLTR are available
- Matching was done for both options of superconducting solenoid
- The results for PLRT (solenoid 1) were cross-checked with ELEGANT
- Spin tracking with BMAD(V. Kovalenko) confirms that no problem with spin
- Asymmetric designs are available for both solenoid strengths but some extra matching may be necessary
- Variation in cell distribution with asymmetric design was investigated for solenoid 1

Back-up slides

PLTR system (October 2011)

Central Region Positron Source layout presented by W. Gai at the ILC Baseline Technical Review Meeting held at DESY, Oct 24-27, 2011.

E

Superconducting solenoid

"So, the e+/e- PLTR specified solenoid parameters are:

- >Field 5.24 T > Length 2.5 m
- > > Current 8692 A
- >> Superconducting cable SSC inner
- ➤Integrated field/solenoid 13.1 T-m for both 26.2 T-m.
- >> The conceptual design based on SSC type SC cable and experience of building such solenoids for INP(Troizk) Meson Facility.
- > SSC inner cable capable carry 9660 A at 7 T field."

Vladimir Kashikhin about the spin rotator solenoids (21 April 2012!!)

First cell

B1: SBEND, L=1.6, angle=0.005

B2: SBEND, L=1.4, angle=0.024, K1=-0.4714

At the combined function magnet:

 β_x/β_y approx 8m/1m

beam size: $\sigma = \sqrt{\beta \varepsilon}$

$$\sigma_x = \sqrt{8*4.5*10^{-6}} = 6*10^{-3} m$$

$$\sigma_{y} = 2.12 * 10^{-3}_{24}$$