	CLIC BDS 380 GeV 000000	CLIC BDS 3 TeV (L*=6m) 0000	Detector field impact 00	
LCWS201	5 International Worl Future Linear Colli	kshop on iders		

CLIC rebaselining and long L* study

BDS designs from 380 GeV to 3 TeV with L*=6 m

Fabien Plassard 1,2 , Rogelio Tomás García 1

Thanks to: Philip Bambade³, Hector Garcia Morales¹, Oscar Blanco³, Eduardo Marin¹, Jochem Snuverink³, Andrea Latina¹, Barbara Dalena⁴, Yngve Levinsen⁵ and the MDI working group¹

 $^1 {\rm CERN},$ Switzerland, Geneva $^2 {\rm Universit\acute{e}}$ Paris Sud, France, Orsay $^3 {\rm LAL},$ France, Orsay 4 John Adams Institute, UK, London $^5 {\rm CEA},$ France, Grenoble $^6 {\rm ESS},$ Sweden, Lund

November 5th 2015

Whistler BC, Canada

	CLIC BDS 380 GeV	CLIC BDS 3 TeV (L*=6m)	Detector field impact	
OUTLIN	IES			

- 1 Motivations
 - Rebaselining of the first energy stage for CLIC
 - Longer L* and new detector model
- 2 CLIC BDS 380 GeV
 - Parameters
 - Optimization of the beamline for L*=4.3 m
 - Optimization of the beamline for L*=6 m
 - Performances : L* = 4.3 m vs L* = 6 m
- 3 CLIC BDS 3 TeV (L*=6m)
 - Parameters
 - Optimisation of the beamline with L*=6 m
 - Performances : L* = 3.5 m vs L* = 6 m
- 4 Detector field impact
 - Process applied for the simulations
 - Impact on CLIC 3 TeV luminosity
- 5 Summary

•0					
Motivations	CLIC BDS 380 GeV	CLIC BDS 3 TeV (L*=6m)	Detector field impact		

Long L* study

Motivations : No interplays between the solenoid field and QD0 field (no anti-solenoid needed), reduces QD0 vibration, eases stabilization and acess to QD0, better forward acceptance ?

picture from N. Siegrist

- New detector model **CLICdet-2015** under study \Rightarrow allows to remove QD0 from the experiment (single detector, no push-pull) with $L^* = 6$ m
- Serie of meetings aiming to define the MDI element positions, the detector and cavern layout, impact and limit on foward acceptance and so forth.
- BDS optimization in order to identify the potential performances (loss of luminosity compare to the nominal L*), pre-alignment and tuning performance and impact of the detector field on luminosity

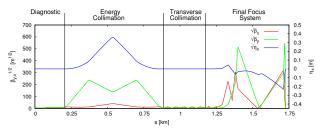
Motivations	CLIC BDS 380 GeV	CLIC BDS 3 TeV (L*=6m)	Detector field impact	
00				
Rebas	selining			

Goal :

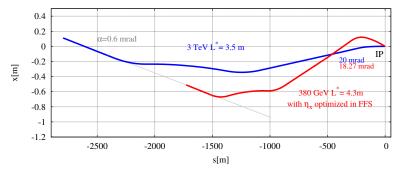
- Optimization of the BDS optics starting from the CLIC 500 GeV baseline (For $L^*=4.3$ m and $L^*=6$ m)
- FFS scheme based on the Local Chromaticity Correction
- Definition of the machine parameters at 380 GeV
- Dispersion optimization in the FFS for both options (nominal and long L^*) in order to improve chromaticity correction
- Energy transition from CLIC 380 GeV to 3 TeV c.o.m :
 - Alignment of the CLIC 380 GeV Linac with the CLIC 3 TeV Linac in the tunnel ⇒ Changes of the angles of the energy collimation bending magnets and crossing angle
 - Re-optimization of the final lattice and comparative study between both options

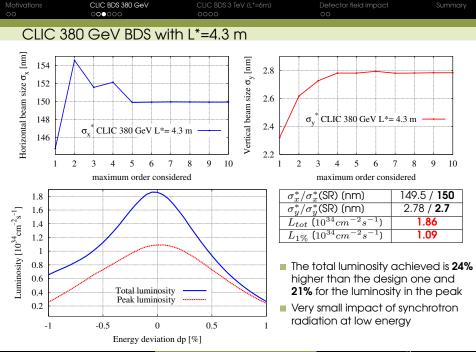
<u> </u>	paramotors			
	00000			
	CLIC BDS 380 GeV	CLIC BDS 3 TeV (L*=6m)	Detector field impact	

Design parameters


CLIC	380 GeV	380 GeV
<i>L</i> * (m)	4.3	6
FFS length (m)	553	770
$\epsilon_{Nx}/\epsilon_{Ny}$ (nm)	950 / 20	950 / 20
eta_x^*/eta_y^* (mm)	8.2 / 0.1	8.2 / 0.1
σ_x^*/σ_y^* design (nm)	145 / 2.32	145 / 2.32
σ_z (μ m)	70	70
δ_p (%)	0.3	0.3
particles/bunch N (×10 ⁹)	5.2	5.2
Number of bunches n_b	352	352
f_{rep} (Hz)	50	50
L_{tot} (10 ³⁴ cm ⁻² s ⁻¹)	1.5	1.5
$L_{1\%}$ (10 ³⁴ cm ⁻² s ⁻¹)	0.9	0.9
Chromaticity ξ_y (L^*/β_y^*)	43000	60000

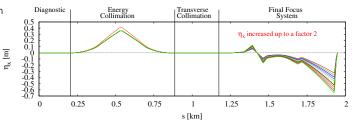
 \blacksquare CLIC 380 GeV emittances $\epsilon_{x,y}$ were chosen according to the emittances calculated at the exit of the Main Linac

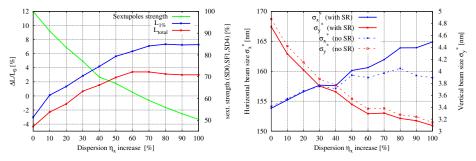

 Motivations
 CLIC BDS 380 GeV
 CLIC BDS 3 TeV (L*=6m)
 Detector field impact

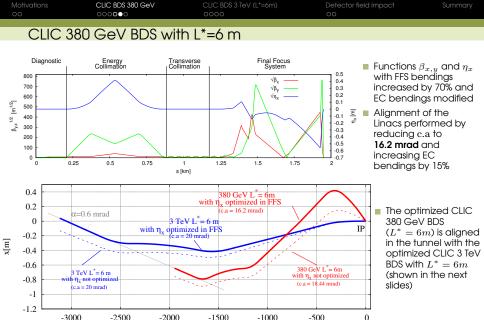

 00
 0000
 0000
 000

 CLIC 380 GeV BDS with L*=4.3 m

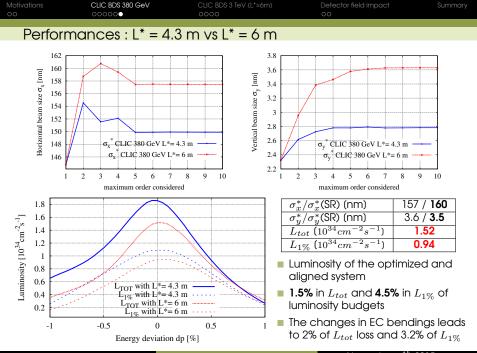
- Scan of the dispersion done ⇒ no change in the FFS bending magnets was needed
- Alignment of the Linacs performed only by reducing the crossing angle from 20mrad to 18.27 mrad
- No change in the energy collimation bending magnets was needed







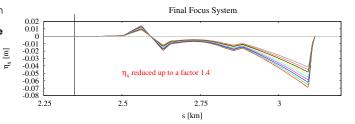
CLIC 380 GeV BDS with L*=6 m

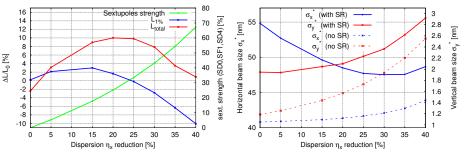

- The optimal dispersion η_x was found by increasing the dipole angles by 70%
- With the optimal dipole angles the average sextupole strength have been reduced by 40%

s[m]

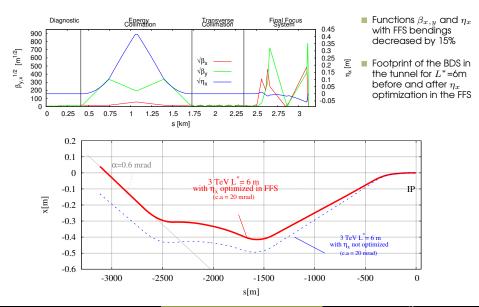
CLIC BDS 380 GeV	CLIC BDS 3 TeV (L*=6m)	Detector field impact	
	0000		

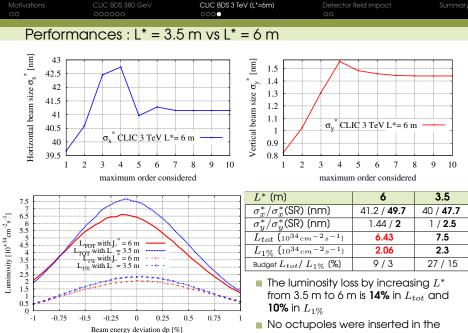
Design parameters CLIC 3 TeV

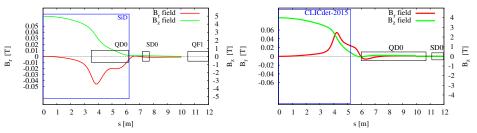

CLIC	3 TeV	3 TeV
<i>L</i> * (m)	3.5	6
FFS length (m)	553	770
$\epsilon_{Nx}/\epsilon_{Ny}$ (nm)	660 / 20	660 / 20
eta_x^*/eta_y^* (mm)	7 / 0.068	7 / 0.1
σ_x^*/σ_y^* design (nm)	40 / 0.7	40 / 1
σ_z (μ m)	44	44
δ_p (%)	0.3	0.3
particles/bunch N (×10 ⁹)	3.72	3.72
Number of bunches n_b	312	312
f_{rep} (Hz)	50	50
L_{tot} (10 ³⁴ cm ⁻² s ⁻¹)	5.9	5.9
$L_{1\%}$ ($10^{34}cm^{-2}s^{-1}$)	2	2
Chromaticity ξ_y (L^*/β_y^*)	51500	60000


- For the $L^* = 6$ m option an optimization study of the $\beta^*_{x,y}$ have been performed in order to optimize the luminosity
- The β_y^* have been increased from 0.068 mm to 0.1 mm allowing to reduce the chromaticity at the IP and reduce the β_y function at the Final Doublet




Optimisation of the beamline with L*=6 m

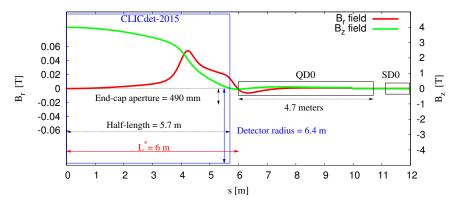

- The optimal dispersion η_x was found by decreasing the dipole angles by 15%
- With the optimal dipole angles the average sextupole strength have been increased by 18%



 Motivations
 CLIC BDS 380 GeV
 CLIC BDS 3 TeV (L*=6m)
 Detector field impact
 Summary

 00
 000000
 0000
 ●0

Impact on CLIC 3 TeV luminosity

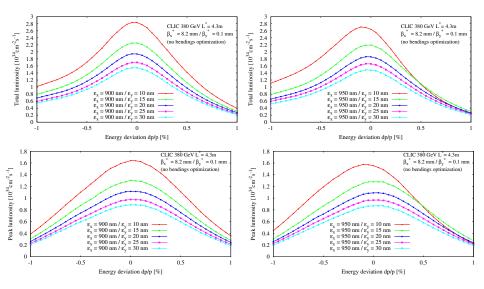

(B_z and B_r fields evaluated along the beamline (20mrad crossing angle) in the solenoid reference frame)

- **B**_z and B_r fields of the SiD solenoid with the last magnets of the $L^*=3.5m$ lattice (left plot) and of the new detector model CLICdet-2015 simulated by B. Curé with the last magnets of the $L^*=6m$ lattice (right plot)
- The simulation approach has been implemented and applied on the nominal 3 TeV BDS with the SiD detector by *B. Dalena* and *Y. Levinsen* (*Phys. Rev. ST Accel. Beams 17, 051002 (2014)*)
- The same simulation process using PLACET and GUINEA-PIG have been applied on the $L^* = 6$ m lattices with the field of the CLICdet-2015
- The simulation procedure evaluates the luminosity loss due to ISR in the interaction region

Impact on CLIC 3 TeV luminosity

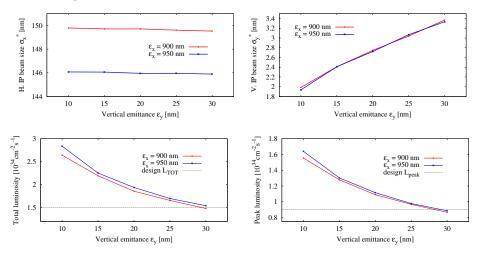
CLIC 3 TeV	Impact on L_{TOT} (%)	Impact on L_{peak} (%)
L* = 6 m NO Antisol	3.7	4.6
L* = 3.5 m NO Antisol	7.8	8.2
L*= 3.5 m WITH Antisol	6.25	6.7

Motivations 00	CLIC BDS 380 GeV CLIC BE 000000 0000	DS 3 TeV (L*=6m)	Detector 00	field impact	Summary			
Sur	Summary							
								
C	CLIC	380 GeV	380 GeV	3 TeV	3 TeV			
1	L* (m)	4.3	6	3.5	6			
0	σ_x^* (SR) (nm)	150	160	47.7	49.7			
C	π_y^* (SR) (nm)	2.7	3.5	2.5	2			
1	L_{tot} (design) / L_{tot} ($10^{34} cm^{-2} s^{-1}$)	1.5 / 1.86	1.5 / 1.52	5.9 / 7.5	5.9 / 6.43			
	$L_{1\%}$ (design) / $L_{1\%}$ ($10^{34}cm^{-2}s^{-1}$)	0.9 / 1.09	0.9 / 0.94	2 / 2.3	2 / 2.06			
	Chromaticity ξ_y (computed)	68464	95697	82637	93017			
E	Budget $L_{tot}/L_{1\%}$ (%)	24/21	1.5 / 4.5	27 / 15	9/3			
li	mpact of solenoid on $L_{tot}/$ $L_{1\%}$ (%)	-	-	7.8 / 8.2	3.7 / 4.6			
T	uning performances	-	-	-	-			


- All lattices fulfill now the design performance requirements
- For L*= 6m option for each stage, the luminosity budget for static and dynamic imperfections is low
- The impact of the solenoid on the luminosity is lower for the long L* option and should not require anti-solenoid
- The tuning is still on progress and will be decisive for the final layout of the FFS (Tradition or Local scheme ? Short or long L^* ?)

CLIC BDS 380 GeV	CLIC BDS 3 TeV (L*=6m)	Detector field impact	Summary

BACK UP


Emittances scan for CLIC 380 GeV with L*= 4.3 m

Emittances scan for CLIC 380 GeV with L*= 4.3 m

warning : red lines are ϵ_x = 950 nm and blue lines are ϵ_x = 900 nm

