

The SCIPP Simulation Group

Bruce Schumm, Pl

<u>Undergraduate Researchers:</u>

Christopher Milke, leader

George Courcoubetis (graduated)
Luc D'Hauthuille
Alix Feinsod (Computer Science)
Olivia Johnson
Jane Shtalenkova

Motivation

Original SiD L^* was 3.5m (SiDLOI3); in interest of a common ILD/SiD L^* , we have explored the effect of increasing this to 4.1m

Also, interest in effects/necessity of anti-did field in light of new BeamCal plug region designs

Explored effect on Vertex Detector occupancy

May be fait accompli at this point but worth noting the effect.

Tools

GEANT4 implemented via SLIC geometry wrapper

Geometry implemented with LCSIM GeomConverter package

SLCIO output analyzed within LCSIM framework

Note: the pairbackground stdhep files were provided by Anne Schuetz (DESY), and were simulated on the GRID by Jan Strube (PNNL)

Geometry Clarifications

Interaction Region has been realigned to be concentric about the outgoing beampipe

Shifting in L* means moving BeamCal and Forward Low Z mask, and lengthening the Forward M1 mask

IR Layout

BeamCal Face Geometry Options

Incidence of pair backgrounds on BeamCal with and without "anti-DiD" field

Tom Markiewicz, SLAC

Tom Markiewicz, SLAC

	No DID		AntiDID	
	# Hits	Energy	#Hits	Energy
Out 3cm exit	17.9%	78.4%	81.9%	85.4%
Out 2cm entrance	1.8%	0.4%	0.6%	0.3%
Hit the plug	74.9%	15.2%	6.7%	2.8%
Outside the plug	5.4%	6.0%	10.9%	11.4%

Conclusion:

- •The Anti-DID really only helps the plug region between the beam pipes
- •Without the plug to create secondaries, VXD backgrounds should be LESS with no Anti-DID and radiation dose to BEAMCAL should be less

This study for a BeamCal at 3m, but as exit hole size will scale with distance, should be true regardless of final layout

Performance Studies

Vertex Detector

Bunch-by-bunch occupancy per layer Mean occupancy vs phi (barrel) and R (endcap)

BeamCal

- Explore efficiency vs. radius for identifying 50 GeV electrons
- •For selection for which 10% of beam crossings mistakenly identify an electron
- Factorize into "geometric" (acceptance) and "instrumental" (S/B) efficiency

Configurations Explored

Nominal: L* = 4.1m; no antiDiD; plug in place

Then, relative to Nominal:

Small L*: L* = 3.5m

AntiDID: Include antiDiD field

Small L* AntiDID: L* = 3.5m with antiDiD field

Wedge: Remove BeamCal plug

Circle: Remove additional BeamCal coverage as shown in prior slide.

Vertex Detector Configurations

We have studied occupancy as a function of two aspects of the VXD readout architecture

Pixel size

- 15 x 15 microns²
- $-30 \times 30 \text{ microns}^2$

Integration time

- 1 beam crossing
- 5 beam crossings

Vertex Detector Results

Nominal IR Geometry Occupancy Distributions (Barrel)

Nominal IR Geometry Occupancy Distributions (Endcap)

We note that:

- Pulse-by-pulse variation is small
- Occupancy only appreciable for largest pixel size (30x30) and greatest integration time (5 Bx)
- Inner layer (0) dominates occupancy in barrel
- Inner layer (0) characteristic of occupancy in endcap
- •Study IR configuration dependence with layer 0 (both endcap and barrel) for 30x30 pixel integrating over 5 Bx.

In terms of: azimuthal dependence in barrel; radial dependence in endcap

Barrel: Mean Occupancy vs. Phi

Endcap: Mean Occupancy vs. R

Vertex Occupancy Dependence on L* Configuration

Vertex Occupancy Dependence on Anti-did Field

Phi (radians)

3

Occupancy Dependence on Plug Geometry

Beam Cal Results

BeamCal Efficiency vs. Radius

Difference due solely to loss of coverage?

BeamCal Efficiency L* Dependence

larger L* consistently displays higher efficiency

BeamCal Efficiency L* Dependence Factorized

BeamCal Efficiency anti-did Dependence

anti-did field does improve efficiency with plug in place

Forward Electromagnetic Calorimeter Kpix Buffer Depth Study

Event Types Included

Pair Backgrounds

Gamma-gamma to Hadron

BhaBha

Low Cross-section

Incremental Occupancy Rates Over a Full Train

<u>Summary</u>

Vertex:

Occupancy always less than 2x10^-3; general less than 2x10

Small dependence on L*

With plug in place, anti-did improves occupancy

Removing plug entirely provides 20-40% reduction in occupancy

BeamCal:

Efficiency improves with larger L*

Anti-did field improves efficiency

Cutting out plug region reduces acceptance

Forward Ecal:

With buffer depth of 4, losing 10^-3 events

Further studies coming soon

Backup