The New CLIC Detector Simulation Model

Nikiforos Nikiforou CERN/PH-LCD on behalf of the CLICdp collaboration

LCWS2015: International Workshop on Future Linear Colliders Whistler BC Canada, November 2nd 2015

CLIC Physics Goals → Detector Requirements

- Momentum resolution • e.g., Higgs coupling to muons $\rightarrow \sigma_{P_T}/p_T^2 \sim 2 \times 10^{-5} \text{GeV}^{-1}$
- Jet energy resolution
 - e.g. Separation of W/Z measurement in di-jet events

 $\rightarrow \sigma_E / E \sim 3.5\%$ for E > 100 GeV

- Impact parameter resolution
 - c/b-tagging, Higgs branching ratios
 →σ_{Rφ} ~ 5 ⊕ 15/(p[GeV] sin^{3/2} θ)µm
- Angular coverage
 - Very forward electron tagging
 →down to θ = 10 mrad
- + Requirements due to CLIC beam structure and beam-induced backgrounds

Evolution of Detector Designs

For the CLIC CDR (2012): Two general-purpose CLIC detector concepts

• Based on initial ILC concepts (ILD and SiD) but optimized and adapted to CLIC conditions

Concept\Key param.	ILD (ILC)	CLIC_ILD	SiD (ILC)	CLIC_SID	CLICdet_2015 (3 TeV)	CMS
Tracker	TPC/Silicon	TPC/Silicon	Silicon	Silicon	Silicon	Silicon
Solenoid Field [T]	3.5	4	5	5	4	3.8
Solenoid Free Bore [m]	3.3	3.4	2.6	2.7	3.4	3.0
Solenoid Length [m]	8	8.3	6	6.5	8.3	13
VTX Inner Radius [mm]	16	31*	14	27*	31*	40
ECAL Inner Radius [m]	1.8	1.8	1.3	1.3	1.5	1.3
ECAL ΔR [mm]	172	172	135	135	159	500
HCAL Absorber B / E	Fe	W / Fe	Fe	W / Fe	Fe	Brass
HCAL λ _ι	5.5	7.5	4.8	7.5	7.55	5.8 Barrel/10 EC
Overall Height [m]	14	14	12	14	12.8	14.6
Overall Length [m]	13.2	12.8	11.2	12.8	11.4	21.6

* For $\sqrt{s} \leq 500$ GeV a variant with a VTX inner radius smaller by 6 mm is foreseen

• N. Nikiforou, 2 November 2015

Simulation Model in Software

- New detector model implemented and being refined in DD4hep with relative flexibility/scalability
 - New package LCgeo holds model implementation

See talk by M. Petric (Thursday morning)

- Developing simulation and reconstruction software based on DD4hep in collaboration with ILD
 - Other relevant talks:
 - Joint ILD/ SiD/CLICdp session on simulation tools and reconstruction algorithms: Tuesday afternoon
 - Simulation/Performance/Reconstruction sessions: Tuesday morning
 - Vertex/tracking joint session with Simulation/Performance/Reco: Thursday afternoon

Proposed Layout in New Detector Model

Magnet System Layout

Quarter view of the magnet system with "thin" yoke Endcaps

Note 4 concentric ring end coils in blue

B-field axial component **with** and **without** end coils as function of z

Use the end coils to compensate for thin endcaps

Forward Region Layout in the New Model

- Wanted to extend HCal Endcap coverage closer to beampipe
- Reoptimized for a working hypothesis of an $L^* = 6 \text{ m}$
 - \rightarrow QD0 outside detector region
 - Simplified services, no need for an anti-solenoid
 - No need for rigid support
 - Smaller support outer radius: 250 mm (was 500 mm)

Vertex Detector: Reminder

Flavor tagging was used as a gauge in various tests :

- 1. Effect of material (most significant effect on performance)
- Vary inner radius (dictated by background rates ↔ B-field)
- Effect of spiral geometry (only small impact)
- Single vs. double layers (minor impact)

See talks during CLICdp meeting with emphasis on Vertex/Tracking (Thursday morning) In the new detector model:

- Double layers (benefits for support)
- **0**. 2%*X*₀ per (single) layer
- $R_{in} = 31 \text{ mm}$
- Spiral geometry in the endcaps (better airflow)
- Pixel size: 25 μm
- 3 µm single point resolution

Silicon Tracker

• We use an All-Silicon Tracker for our new model

- A TPC tracker would have very high occupancies (30%) for CLIC @ 3 TeV with 1x6 mm² pads (without safety factors)
- Fast Simulation (LicToy) studies varying geometry and layout (R, length, number of layers, etc) as well as material (supports, cabling, cooling)
 Use p_T and d₀ resolution to gauge performance
- Key parameters currently implemented:
 - \circ Material Budget: between 1.6 % X_0 and 2.2% X_0 per layer
 - Requires very thin materials/sensors
 - Less critical than in Vertex Detector
 - \circ Single point resolution: $\sigma_{R\phi} = 7 \ \mu m$
- Full simulation studies ongoing with new <u>Reconstruction Software</u>

See talk by R. Simoniello (Thursday afternoon)

Silicon Tracker Radius/ B-field

- Can compensate a change in *B* by rescaling *R* by $\sqrt{B_{nom}/B}$
- B-Field and R also affect Particle Flow Performance

• Previous ILD studies by M. Thomson and J. S. Marshall [4,5]

- A magnetic field strength of up to 4.5 T should be technically feasible
- Converged to an outer tracking radius of 1.5 m and field strength of 4 T

- Tracker length: at least like CLIC_ILD (4.6 m)
 - Motivated by physics in the forward region (e.g. Higgs self-coupling)
 - Reduce Endcap Yoke thickness by 1.2 m and use end coils

Si Tracker Layout

- 5 "short" Barrel layers
 - First layer at R = 230 mm
- 7 "flat" Endcap disks (full R)
 - New First disk at z = 430 mm
- Arranged in an *Inner* and *Outer Tracker*
 - Support tube for extraction with beampipe assembly

- At least 8 hits (Vertex + Tracker) for θ> 8°
- Module arrangement and overlap still under investigation
- Cell size should vary from layer to layer
 - Motivated by occupancy (next slide)

Tracker: Open Issues

- Probably use gradually longer strips in layers
 - Oriented along z(R) for barrel (endcap)
 - Length 1 10 mm, $\sigma_{z(R)} = 0.3 3 \text{ mm}$
 - $\circ~$ Considering large pixels ($\sigma=5~\mu m$) for first endcap disk
- Sensor Technology?
- Power pulsing!
- Air cooling not feasible in a large tracker volume
- Use of liquid cooling restricts also options for module geometry/layout/overlap!
 - Material budget for cooling and supports already implemented in model

• Tracker hardware R&D recently started

See talk by A. Nurnberg (Thursday afternoon) and talks in the CLICdp meeting (Thursday morning)

ECal Optimization

- # Layers: Not very important for higher energy jets (PFA confusion dominates): Not much more improvement from 25 to 30 layers
 - Keeping 23 X_0
- Si vs Sc: No significant effect on JER
- Cell size: JER degradation from 3% to ~3.5% when increasing cell size from 5x5 mm² to 15x15 mm²
 - Combinations of different granularities in layers considered
 - No significant gain for the extra complexity

In new simulation model:

- **Tungsten** absorber, **Silicon** active material
- **25** Layers, $23 X_0 / 1 \lambda_I$
 - 17× 2.4 mm + 8 × 4.8 mm
- Use **5.1x5.1 mm²** cells throughout

N. Nikiforou, 2 November 2015

HCal Optimization

- Example: HCal Barrel Absorber
 0 10 mm Tungsten (W)
 Keep same Depth at ~7.5 λ_I
- Full Geant4 detector simulation + PandoraPFA + FastJet
- JER Performance shown to be similar for tungsten and steel

• Steel is cheaper and easier to process

⇒ Use Steel as an absorber for the entire HCal

- 60 layers
- 20 mm Steel (1 mm in cassette)
- 3 mm Scintillator
- 30x30 mm² Cell size

More Calorimetry

- The ECal and HCal combined present at least 8.5 λ_I down to $\theta = 10^o$
 - Does not include BeamCal/LumiCal
- HCal Endcap now **extended** down to $R_{in} = 250 \text{ mm}$
 - With some cutout for LumiCal
- We found that R_{in} = 240 mm is a good compromise between letting in more background and increased acceptance
 - Studied m_{JJ} in $ZZ \rightarrow jj\nu\nu$ events with overlay for various HCal Endcap inner radii
- 12-fold inner and outer symmetry for ECal/HCal/Yoke

Summary

- New simulation model for a detector at CLIC evolving from previous CDR models based on modified ILC designs
 - Longer All Silicon Tracker, B = 4 T, $R_{in}^{ECal} = 1.5$ m, thinner endcap yoke with end coils
 - o 25 layer W+Si ECal, 60 layer Fe HCal, 12-fold symmetry
- Optimization result of a big effort from many people and still ongoing
 - Important R&D efforts also ongoing (not covered in this talk)
- Model implementation in DD4hep up to date
 - Reconstruction software developed in parallel
- Full simulation physics studies with the new software chain will start soon

Backup Material

• N. Nikiforou, 2 November 2015

References

- 1. L. Linssen et al., Physics and Detectors at CLIC : CLIC Conceptual Design Report, CERN-2012-003
- 2. N.Alipour Tehrani and P. Roloff, Optimisation Studies for the CLIC Vertex-Detector Geometry, CLICdp-Note-2014-002
- 3. D. Dannheim et al., Slides at https://indico.cern.ch/event/309925/contribution/2/material/slides/0.pdf
- 4. M. Thomson, Nucl.Instrum.Meth. A611 (2009)
- 5. J. Marshall, Slides at http://indico.cern.ch/event/309926/contribution/1/material/slides/0.pdf
- 6. B. Cure, Slides at https://indico.cern.ch/event/314325/contribution/1/material/slides/1.pdf
- 7. M. Thomson, Slides at http://indico.cern.ch/event/309926/contribution/1/material/slides/0.pdf
- 8. M. Valentan et al, LiC Detector Toy Fast Simulation
- 9. R. Simoniello, Slides at https://indico.cern.ch/event/376800/session/3/contribution/5/material/slides/0.pdf
- 10. A. Nurnberg, Slides at https://indico.cern.ch/event/376800/session/2/contribution/28/material/slides/0.pdf
- 11. M. Killenberg, LCD-Note-2011-029
- 12. J. S. Marshall, Slides at https://indico.cern.ch/event/336335/session/6/contribution/5/material/slides/0.pdf
- 13. F. Gaede, Slides at https://indico.cern.ch/event/376800/session/0/contribution/12/material/slides/0.pdf
- 14. M. Petric, Slides at https://indico.cern.ch/event/376800/session/0/contribution/11/material/slides/0.pdf
- 15. D. Dannheim, A. Sailer, Beam-Induced Backgrounds in the CLIC detectors, LCD-Note-2011-021
- 16. E. van Der Kraaij, Detector challenges at CLIC, contrasted with the LHC case, slides at http://indico.cern.ch/event/210720/

CLIC and Detector Documentation

- 2012: CLIC Conceptual Design Report published
- 2012: CLIC detector and physics collaboration (CLICdp) was set up
- 2012/2013: CLIC input to the European strategy and the Snowmass Process in the US

The CLIC Experimental Environment

	CLIC at 3 TeV	Drive timing requirements for the			
Luminosity	5.9×10 ³⁴ cm ⁻² s ⁻¹	CLIC detector			
Bunch separation	0.5 ns				
#Bunches per train	312	Low duty cycle			
Train duration	156 ns	 Inggeriess readout Power pulsing (turning power 			
Train repetition rate	50 Hz 🖌	off when not needed)			
Particles per bunch	3.72 ×10 ⁹				
Crossing angle	20 mrad	Very small beam profile at the			
$\sigma_x / \sigma_y [nm]$	≈ 45 / 1 ←	$\Rightarrow Verv high F-fields \Rightarrow$			
σ_{z} [µm]	44	Beam-beam background			
CLIC bunch structure	6	156 ns 20 ms → ▲ ★ ★			
 not to scale - N. Nikiforou, 2 November 2015 1 train = 312 bunches, 0.5 ns apart 					

Beam-Induced Backgrounds

e⁺e⁻ Pairs

many

Beamstrahlung

- Beamstrahlung:
 - Pair-background
 - Coherent e^+e^- pairs: 7×10^8 /BX
 - \circ Very forward
 - Incoherent e⁺e⁻ pairs: 3 × 10⁵/BX
 - \circ Rather forward
 - High occupancies influence detector design
 - Ο γγ to hadrons (3.2 events/BX @ 3 TeV)
 - Energy deposits (19 TeV/train @ 3 TeV)
 - Main background in calorimeters and trackers

More on Beam-Beam Effects

CLIC power and energy

Table 5.1: Nominal power and efficiency for staging scenarios A and B, where $W_{main \ beam}$ is for the two main beams.

Staging scenario	\sqrt{s} (TeV)	$\mathscr{L}_{1\%} (cm^{-2}s^{-1})$	Wmain beam (MW)	$P_{electric}$ (MW)	Efficiency (%)
	0.5	$1.4 \cdot 10^{34}$	9.6	272	3.6
Α	1.4	$1.3 \cdot 10^{34}$	12.9	364	3.6
	3.0	$2.0 \cdot 10^{34}$	27.7	589	4.7
	0.5	$7.0 \cdot 10^{33}$	4.6	235	2.0
В	1.5	$1.4 \cdot 10^{34}$	13.9	364	3.8
	3.0	$2.0 \cdot 10^{34}$	27.7	589	4.7

Table 5.2: Residual power without beams for staging scenarios A and B.

Staging scenario	\sqrt{s} (TeV)	Pwaiting for beam (MW)	$P_{shut down}$ (MW)
	0.5	168	37
Α	1.4	190	42
	3.0	268	58
	0.5	167	35
В	1.5	190	42
	3.0	268	58

CLIC_ILD and CLIC_SiD

For the CLIC CDR (2012):

Two general-purpose CLIC detector concepts Based on initial ILC concepts (ILD and SiD) Optimized and adapted to CLIC conditions

•24

• N. Nikiforou, 2 November 2015

Vertex Detector Optimization

Spiral Geometry (better airflow)

Use flavor tagging as a gauge in various

80 θ [°]

- 1. Effect of material (most significant effect on performance)
- 2. Test single vs. double layers
- 3. Vary inner radius (for 4 T or 5 T B-field)

In the new detector model: Use double layers with spirals and modules with 0.2% X_0 per (single) layer, $R_{in} = 31 \text{ mm}$

(N.Alipour Tehrani, P. Roloff [2])

performance for more material

Vertex Detector : Effect of Inner Radius /Material

- Compensates for increase in the rate of Incoherent e-pair background if Bfield is reduced
- Small effect in flavor-tagging performance
- Double-layer modules were simulated with twice as much material
- Extra material leads to undesirable increase of fake rate

In the new detector model: Use double layers with spirals and modules with 0.2% X_0 per (single) layer

More Tracker Optimization (R. Simoniello[9])

- **Fast Simulation** (LicToy) Study varying **geometry and layout** (**R**, length, number of layers, etc) as well as **material** (supports, cabling, cooling)
 - Use $p_{\rm T}$ and d_0 resolution to gauge performance
- Full simulation studies also ongoing with new Reconstruction Software

Optimise gap between barrel/forward and the outer radius of the forward disk

•29

Silicon Tracker

- A TPC tracker would have very high occupancies (30%) for CLIC @ 3 TeV with 1x6 mm² pads (without safety factors)
 - We use an All-Silicon Tracker for our new model

- Fast Simulation studies (LicToy) to determine optimal parameters
- Material Budget $\rightarrow \sim 1\% X_0$ per layer
 - Requires very thin materials/sensors
 - Less critical than in Vertex Detector
- Single point resolution: ~7 μm
 O Critical for high-momentum tracks

TPC Occupancy in CLIC_ILD

From CDR. See also LCD-Note-2011-029 [11]

(a) Voxel occupancies for $1 \times 6 \text{ mm}^2$ pads

(b) Voxel occupancies for $1 \times 1 \text{ mm}^2$ pads

Fig. 5.11: Voxel occupancies for different pad sizes, averaged per pad row in the TPC for particles originating from $\gamma\gamma \rightarrow$ hadrons, incoherent pairs and beam-halo muons. The data correspond to one complete bunch train and do not include safety factors.

Occupancy in the Main Tracker

- High occupancies in certain regions
- Full Mokka-based (Geant4) simulation using a modified CLIC_ILD detector driver (TPC replaced with Si Layers) – DDSim-based study ongoing
- Assume 100 mm × 50 μ m strips, avg. cluster size 2.6 , safety factors 5 (pairs) and 2 ($\gamma\gamma \rightarrow had$) (Recent study by A. Numberg[10]. See also LCD-Note-2011-021[15])

- Need for large pixels and/or short-strips
- Maximal strip length to be below 3% limit depends on layer (2 50 mm in barrel)
 N. Nikiforou, 2 November 2015

Silicon Tracker Radius/ B-field

Tracking performance depends on tracker radius and magnetic field

$$\frac{\sigma(p_{\rm T})}{p_{\rm T}^2} \propto \frac{\sigma^{meas}}{\sqrt{NB \cdot R^2}}$$

Stronger dependence on *R*

- Can compensate reduction of B in new detector by rescaling R by $\sqrt{B_{nom}/B}$
- Increase from 1.3 m (CLIC_SID) but not much gain by going to 1.8 m (CLIC_ILD) -> Converged to 1.5 m for new model

• N. Nikiforou, 2 November 2015

Extended Tracker: Momentum Resolution Vs B-Field

- Based on DD4hep/DDRec
- Track Fitting Strategy:
 - Fit inside-out starting with vertex pixel hits
 - 1D hits in main tracker (strips) provide no constraint in z so cannot be used to initialize tracks
 - Finally smooth back to third hit and fit inside from there
- Current pattern recognition being developed from ILD Celloular Automaton-based Vertex patt. Rec.

Calorimeters

Entries/keV

<detector name="ECalBarrel"
type="ECalBarrel_o1_v01"
readout="ECalBarrelHits">

<detector name="HCalBarrel"
type="HCalBarrel_o1_v01"
readout="HCalBarrelHits">

<detector name="Solenoid"
type="Solenoid_o1_v01"</pre>

<detector name="HCalEncap"
type="HCalEndcap_o1_v01"
readout="HCalEndcapHits">

<detector name="ECalEncap"
type="ECalEndcap_o1_v01"
readout="ECalEndcapHits">

- Fairly scalable drivers
- Radii, Layer/module composition in compact xml

<detector ...>

Simulation and reconstruction under validation

• N. Nikiforou, 2 November 2015

- Identify t₀ of physics event offline
 - Correct for shower development and TOF, define reconstruction window around t_0
 - Pass all calorimeter hits and tracks within window to reconstruction

 \rightarrow Obtain physics objects with precise p_T and cluster time information

- Then apply cluster-based timing cuts
 - Cuts depend on particle type, p_T and detector region →Protects high- p_T physics objects
- Also: use hadron collider-type jet algorithms (FastJet)

tCluster

General Requirements on Detector Technologies

- CLIC conditions ⇒ impact on detector technologies:
 - High tracker occupancies ⇒ need small cell sizes (beyond what is needed for resolution)
 - Small vertex pixels
 - Large pixels / short strips in the tracker
 - Background suppression
 - Need high-granularity calorimetry
 - 1 ns accuracy for calorimeter hits
 - $\sim 10 \text{ ns}$ hit time-stamping in tracking
 - Low duty cycle
 - Triggerless readout
 - Allows for power pulsing
 - less mass and high precision in tracking
 - \circ high density for calorimetry

Calorimeter Optimization

- High granularity imaging calorimeters to use with Pandora Particle Flow Algorithms
- Variations on Number and Layout of Layers, Cell size, absorber material and thickness, active material and thickness, total depth, ...
- Optimization performed also in collaboration with ILD
 Used mainly ILD-based Mokka drivers and ILD software chain
- Need to recalibrate detector response with each variation
 - Developed a quasi-automatic calibration procedure
- Gauge model performance using:
 - Single particle response
 - Jet Energy Resolution ($Z \rightarrow uds$, $WW \rightarrow \nu \ell ud$, $ZZ \rightarrow \nu \nu dd$)

ECal Optimization (J.S. Marshall [12])

- Starting point: 29 layers W absorber (23X₀, 1λ₁), 30 layers Si active medium (1 pre-sampler), divided into 5x5mm² pixels.
- Particle flow means performance depends critically on patternrecognition, not just intrinsic ECAL energy resolution.
- Granularity requirements and use of Si make ECAL expensive: consider scintillator (Sc) with SiPM readout as active medium.
- Examined wide range of ECAL models, developing detailed understanding of resulting jet energy resolutions.

Failure to separate photons from nearby charged hadrons: "photon confusion"

ECal Optimization: Active Material, Number of Layers, Granularity

ILD-based baseline model: **SiW ECal with 29 layers** $(23 X_0 / 1 \lambda_I)$:

- Tungsten absorber: **20x2.1 mm + 9x 4.2 mm**
- Silicon Active material, **500 μm** thickness, **5x5 mm²** cells

- However, at 120 mm probably the increased background spoils the efficiency
 - Investigated more the peak below $m_{II} < 50$ GeV

11/2/2015

