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Å Brief context and introduction 

Å Reminder of CLIC CDR 2012  

Å Rebaselining + project staging 

Å R&D status + highlights 

Å Strategic plan Ą 2018/19 and beyond 

Å Outlook 

 

      Apologies for skipping many results + details! 
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CLIC layout 3 TeV 
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CDR (2012) 
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CDR tunnel layout 
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CDR 
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Å Pre-Higgs discovery  

Å Optimised design for 3TeV, but not lower energies 

Å First look at power/energy requirements 

Å Some industrial costing, overall cost not 

optimised 

Å Some component reliability studies 

Å X-band demonstration limited by test capacity 

Å Initial system tests 

 

Ą Already a lot more has been (and will be) done! 

  



CLIC energy staging (CDR) 
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Energy-staging exercise started for CDR 
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CLIC energy staging (CDR) 
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CLIC energy staging (CDR) 



AC power  
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LEP-SLC 

LEP II 

CEPC goal,  
2x10^34 
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ILC  1TeV 
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Energy consumption  
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CERN 2012 



AC power (1.5 TeV)  
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Beyond the CDR 
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Develop a Project Plan for a staged implementation 

of CLIC, consistent with LHC findings, as an option 

for CERN in post-LHC era ï for consideration in next 

European Strategy update 2018/19 

 

Å Update physics studies in light of LHC results 

Å Complete key technical feasibility R&D  

Å Perform more system tests + verification 

Å More advanced industrialisation studies  

Å Rebaseline, cost/staging strategy with a 20-30 

year perspective 

 



Rebaselining: goals 
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Optimize machine design w.r.t. cost and power for: 

 

 ~ 380   GeV (optimised for Higgs + top physics) 

 ~ 1500 GeV 

 3000    GeV (working assumption, pending LHC results) 

 

for various luminosities and safety factors  

 

Expect to make significant cost and power reductions for the 

initial stages 

 

Choose new staged parameter sets, with a corresponding 

consistent upgrade path, also considering the possibility of 

the initial-stage being klystron-powered 



D. Schulte, CLIC Rebaselining, February 2015 19 

Structure design fixed by few 
parameters 
 a1,a2,d1,d2,Nc,f,G 
 
Beam parameters derived 
automatically to reach specific 
energy and luminosity 
 
Consistency of structure with RF 
constraints is checked 
 
Repeat for 1.7 billion cases 

Design choices and specific studies 

Å Use 50Hz operation for beam stability 

Å Scale horizontal emittance with charge to keep the same risk in damping ring 

Å Scale for constant local stability in main linac, i.e. tolerances vary but stay above CDR 
values 

Å BDS design similar to CDR, use improved bx-reach as reserve 
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D.	Schulte,	CLIC	Rebaselining	Progress,	February	2014	

óAutomaticô parameter determination 



Cost / power model 
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Simplified	Parameter	Diagram	
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D.	Schulte,	CLIC	Rebaselining	Progress,	February	2014	
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Infrastructure	and	Services	
Controls	and	opera onal	
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Cinestment,	
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Power Model 
ÅDoes not contain BDS and experiments 
ÅMain beam injector power scaled with charge 

per train 
ÅSome improvement is possible (e.g. drive 

beam turn-around magnets, booster linacΣ Χύ 



Luminosity goal impacts 
minimum cost 
For L=1x1034cm-2s-1 to 
L=2x1034cm-2s-1 : 
 
Costs 0.5 a.u. 
And O(100MW) 
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L=1.0x1034cm-2s-1 

L=1.25x1034cm-2s-1 

L=1.5x1034cm-2s-1 

L=2.0x1034cm-2s-1 

S=1.1 

Cheapest machine is close to lowest power 
consumption => small potential for trade-off  

Example output (360 GeV) 



Rebaselining:  

first stage energy ~ 380 GeV 
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